HELMHOLTZ MUNICH

MACHINE LEARNING

Linear Models: Logistic Regression

Last Update: 31st October 2022

STRUCTURE

1. Logistic Regression
1.1 Decision boundary
1.2 Negative Log Likelihood (NLL)
1.3 Maximum likelihood estimation (MLE)
1.4 Maximum A Posterior (MAP)
1.5 Multinominal Logistic Regression

LOGISTIC REGRESSION

Definition

Logistic regression is a widely used discriminative classification model $p(y \mid \mathbf{x} ; \theta)$, where $\mathbf{x} \in \mathbb{R}^{D}$ is a fixed-dimensional input vector, $\mathbf{y} \in\{1, \ldots, C\}$ is the class label, and θ are the parameters.
if $C=2$, this is known as binary logistic regression, and if $C>2$, it is known as multinomial logistic regression, or alternatively, multiclass logistic regression.

BINARY LOGISTIC REGRESSION

Example: classifying Iris flowers (Code)

Binary Logistic Regression| Sigmoid function I Linear classifier I Objective function

Given some inputs $x \in \mathcal{X}$ and a mapping function $f(\cdot)$ that predict a binary variable $y \in\{0,1\}$, the conditional probability distribution $p(y \mid x ; \theta)=\operatorname{Ber}(y \mid f(x ; \theta))$ where

$$
\begin{aligned}
& p(y=1 \mid x ; \theta)=f(x ; \theta) \triangleq \sigma\left(\mathbf{w}^{T} \mathbf{x}+b\right) \\
& \sigma(a)=\frac{1}{1+e^{-a}} \text { is the sigmoid function } \\
& a=\mathbf{w}^{T} \mathbf{x}+b \text { is often called logits or } \\
& \text { pre-activation. } \\
& \text { find } \mathbf{w} \text { and } b \text { for the given example. }
\end{aligned}
$$

HYPOTHESIS REPRESENTATION -- SIGMOID FUNCTION

What happens when $a \rightarrow \infty ?^{1}$ or $a>0$?

$$
{ }^{1} \sigma(\cdot) \triangleq \operatorname{sig}(\cdot), \text { and } a \triangleq t
$$

LINEAR CLASSIFIER-- DECISION BOUNDARY

$$
\begin{aligned}
f(\mathbf{x}) & =\mathbb{I}(p(y=1 \mid \mathbf{x})>p(y=0 \mid \mathbf{x})) \\
& =\mathbb{I}\left(\log \frac{p(y=1 \mid \mathbf{x})}{p(y=0 \mid \mathbf{x})}>0\right) \\
& =\mathbb{I}(a>0) \rightarrow \text { Perceptron }
\end{aligned}
$$

The inner product $\langle\mathbf{w}, \mathbf{x}\rangle$ defines the hyperplane with a normal vector \mathbf{w} and offset b.
This plane $\mathbf{w}^{T} \mathbf{x}+b=0$ is often called the decision boundary seperating the 3d space into two halfs.
$a=\mathbf{w}^{T} \mathbf{x}+b \triangleq b+\sum_{d=1}^{D} w_{d} x_{d}$

More about dot products: watch this YouTube Video

We call the data to be lineraly seperable if we can perfectly separate the training examples by such a dinear boundary.

Machine Learning

-1	Logistic Regression
I	LDecision boundary
İ	LLinear classifier- Decision boundary

LINEAR CLASSIFIER- DECIIION BOUNDARY

$f(\mathbf{x})=1(p(y=1 \mid \mathbf{x})>p(y=0 \mid \mathbf{x})$
$=1\left(\log \frac{p(y=1 \mid x)}{p(y=0 \mid x)}>0\right)$
$=1(a>0) \rightarrow$ Perceptron

Example: Given the data points on the right hand side,

 what would be your optimal decision boundary to make the data lineraly seperable?$$
\begin{aligned}
& \sigma(a)=\sigma\left(w^{T} x+b\right) \\
& a=b+\sum_{d=1}^{D} w_{d} x_{d} \triangleq b+w_{1} x_{1}+w_{2} x_{2}=0
\end{aligned}
$$

LINEAR CLASSIFIER -- DECISION BOUNDARY

The vector w defines the orientation of the decision boundary, and its magnitude, $\|w\|_{2}=\sqrt{\sum_{d=1}^{D} w_{d}^{2}}$ controls the steepness of the sigmoid, and hence the confidence of the predictions.

Play with the code

NONLINEAR CLASSIFIER

We can often make a problem linearly separable by preprocessing the inputs in a suitable way.
let $\phi(x)$ be a transformed version of the input feature vector.
suppose we use $\phi\left(x_{1}, x_{2}\right)=\left[1 ; x_{1}^{2} ; x_{2}^{2}\right]$, and we let $w=\left[-R^{2} ; 1 ; 1\right]$.
$w^{T} \phi(x)=-R^{2}+x_{1}^{2}+x_{2}^{2}$, so the decision boundary (where $w^{T} \phi(x)=0$) defines a circle with radius R.

DEMO

MAXIMUM LIKELIHOOD ESTIMATION (MLE)

Maximum likelihood estimation (MLE)

It can be obtained by minimizing the Negative Log Likelihood as an objective function

$$
\theta_{M L E}=\underset{\theta}{\arg \min } N L L(\theta)
$$

The Negative Log Likelihood (NLL) for the binary classification is given by $N L L(\mathbf{w})=-\frac{1}{N} \log \prod_{n=1}^{N} \underbrace{\operatorname{Ber}\left(y_{n} \mid f\left(\mathbf{x}_{n} ; \mathbf{w}\right)\right)}_{p\left(y_{n} \mid x_{n} ; \theta\right)} \triangleq-\frac{1}{N} \log \prod_{n=1}^{N} \operatorname{Ber}\left(y_{n} \mid \mu_{n}\right)$ where
$\mu_{n}=f\left(\mathbf{x}_{n} ; \mathbf{w}\right)=\sigma\left(a_{n}\right)$ is the prediction
$a_{n}=\mathbf{w}^{T} \mathbf{x}_{n}=\sum_{d=0}^{D} w_{d} x_{n d}$ is the logit, with bias $w_{0}=b$ and $x_{0}=1$.
The NLL can be written as $N L L(\mathbf{w})=-\frac{1}{N} \sum_{n=1}^{N} y_{n} \log \mu_{n}+\left(1-y_{n}\right) \log \left(1-\mu_{n}\right)$

Why Negative Log Likelihood? Indeed, why we need to take the Log? and why we need to take the negative?

What about other loss functions, e.g., Mean Squared Error?

Machine Learning
MAXMUM LIKELHOOD ESTMATION (MLE)
Logistic Regression
-Negative Log Likelihood (NLL)
-Maximum likelihood estimation (MLE)

Given $\operatorname{Ber}(y \mid \theta) \triangleq \theta^{y}(1-\theta)^{1-y}$, the $N L L(\mathbf{w})=-\frac{1}{N} \log \prod_{n=1}^{N} \operatorname{Ber}\left(y_{n} \mid \mu_{n}\right)$, the objective function can be written as:

$$
\begin{aligned}
N L L(\mathbf{w}) & =-\frac{1}{N} \log \prod_{n=1}^{N} \operatorname{Ber}\left(y_{n} \mid \mu_{n}\right) \\
& =-\frac{1}{N} \log \prod_{n=1}^{N} \mu_{n}^{y_{n}}\left(1-\mu_{n}\right)^{1-y_{n}} \\
& =-\frac{1}{N} \sum_{n=1}^{N} \log \left[\mu_{n}^{y_{n}}\left(1-\mu_{n}\right)^{1-y_{n}}\right] \\
& =-\frac{1}{N} \sum_{n=1}^{N} \underbrace{y_{n} \log \mu_{n}+\left(1-y_{n}\right) \log \left(1-\mu_{n}\right)}_{\mathbb{H}_{c e}\left(y_{n}, \mu_{n}\right) \quad \text { is the binary cross entropy }}
\end{aligned}
$$

2

[^0]
MAXIMUM LIKELIHOOD ESTIMATION (MLE)

Given the objective function, we aim to find the MLE solution by computing the gradient and solving

$$
\begin{aligned}
& g(\mathbf{w})=\nabla_{\mathbf{w}} N L L(\mathbf{w})=0 \\
& \nabla_{\mathbf{w}} N L L(\mathbf{w})=\frac{1}{N} \sum_{n=1}^{N}\left(\mu_{n}-y_{n}\right) \mathbf{x}_{n} \\
& \nabla_{\mathbf{w}} N L L(\mathbf{w})=\frac{1}{N}\left(1_{N}^{T}(\operatorname{diag}(\mu-\mathbf{y}) \mathbf{X})\right)^{T} \text { in a matrix form }
\end{aligned}
$$

To ensure the objective function is convex, we must prove the hessian is positive semi-definite;

$$
\begin{aligned}
& \mathbf{H}=\nabla_{w} \nabla_{w} N L L(\mathbf{w})=\frac{1}{N} \sum_{n=1}^{N}\left(\mu_{n}\left(1-\mu_{n}\right) x_{n}\right) x_{n}^{T} \\
& \mathbf{H}=\frac{1}{N} \mathbf{X}^{T} \mathbf{S X} \text { in a matrix form where } \\
& \mathbf{S} \triangleq \operatorname{diag}\left(\mu_{1}\left(1-\mu_{1}\right), \cdots, \mu_{N}\left(1-\mu_{N}\right)\right)
\end{aligned}
$$

It can be shown that for any non-zero vector, \mathbf{v};

$$
\mathbf{v}^{T} \mathbf{H} \mathbf{v}=\mathbf{v}^{T} \mathbf{X}^{T} \mathbf{S X} \mathbf{v}=\left(\mathbf{v}^{T} \mathbf{X}^{T} \mathbf{S}^{\frac{1}{2}}\right)\left(\mathbf{S}^{\frac{1}{2}} \mathbf{X} \mathbf{v}\right)=\left\|\mathbf{S}^{\frac{1}{2}} \mathbf{X} \mathbf{v}\right\|_{2}^{2}>0
$$

Play with the code

MAXIMUM LIKELIHOOD ESTIMATION (MLE)

Given the gradient $\frac{1}{N}\left(1_{N}^{T}(\operatorname{diag}(\mu-\mathbf{y}) \mathbf{X})\right)^{T}$ and the hessian $\frac{1}{N} \mathbf{X}^{T} \mathbf{S X}$ of the objective function, one can compute the stochastic gradient descent (Sec. 8.4) using
first-order method:

$$
\begin{aligned}
\omega_{t+1}=\omega_{t}-\eta_{t} \mathbf{g}_{t} & \triangleq \omega_{t}-\eta_{t} \frac{1}{N}\left(1_{N}^{T}\left(\operatorname{diag}\left(\mu_{t}-\mathbf{y}\right) \mathbf{X}\right)\right)^{T} \\
& \triangleq \omega_{t}-\eta_{t} \frac{1}{N} \sum_{n=1}^{N}\left(\mu_{n}-y_{n}\right) \mathbf{x}_{\mathbf{n}}
\end{aligned}
$$

slow convergence, when gradient is small

1: $w \leftarrow 0, \eta \leftarrow 1$
2: repeat
3: \quad for $n=1: N$ do
4: $\quad a_{n} \leftarrow \omega^{T} \mathbf{x}_{n}$
5: $\quad \mu_{n} \leftarrow \sigma\left(a_{n}\right)$
6: $\quad e_{n} \leftarrow\left(\mu_{n}-y_{n}\right)$
7: end for
8: $\quad \mathbf{E} \leftarrow \operatorname{diag}\left(e_{1: N}\right)$
9: $\quad \omega \leftarrow \omega-\eta \frac{1}{N} \mathbf{X}^{T} \mathbf{E}$
10: until Converged

MAXIMUM LIKELIHOOD ESTIMATION (MLE)

Given the gradient $\frac{1}{N}\left(1_{N}^{T}(\operatorname{diag}(\mu-\mathbf{y}) \mathbf{X})\right)^{T}$ and the hessian $\frac{1}{N} \mathbf{X}^{T} \mathbf{S X}$ of the objective function, one can compute the stochastic gradient descent (Sec. 8.4) using
second-order method:
$\omega_{t+1}=\omega_{t}-\eta_{t} \mathbf{H}_{\mathbf{t}}{ }^{-1} \mathbf{g}_{t} \triangleq \eta_{t}\left(\mathbf{X}^{T} \mathbf{S}_{t} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{S}_{t} \mathbf{z}_{t}$ where $\mathbf{z}_{t} \triangleq \mathbf{X} \omega_{t}+\mathbf{S}_{t}^{-1}\left(\mathbf{y}-\mu_{\mathrm{t}}\right)$
It is often called Iteratively reweighted least
squares (IRLS)

1: $w \leftarrow 0, \eta \leftarrow 1$
2: repeat
3: \quad for $n=1: N$ do
$a_{n} \leftarrow \omega^{T} \mathbf{x}_{n}$
$\mu_{n} \leftarrow \sigma\left(a_{n}\right)$
$s_{n} \leftarrow \mu_{n}\left(1-\mu_{n}\right)$
$z_{n} \leftarrow a_{n}+\frac{y_{n}-\mu_{n}}{s_{n}}$
end for

$$
\mathbf{S} \leftarrow \operatorname{diag}\left(s_{1: N}\right)
$$

$$
\omega \leftarrow \eta\left(\mathbf{X}^{T} \mathbf{S X}\right)^{-1} \mathbf{X}^{T} \mathbf{S} \mathbf{z}
$$

11: until Converged

VISUALIZATION

Play with the code

Logistic regression curve（3D）

 costs： 0.926
－－－epochs： 0

OVERFITTING

MAXIMUM A POSTERIOR (MAP)

Maximum A Posterior (MAP)

It can be obtained by minimizing the Penalized Negative Log Likelihood as an objective function

$$
\theta_{M A P}=\underset{\theta}{\arg \min } N L L(\theta)+\lambda\|\theta\|_{2}^{2}
$$

where $\|\theta\|_{2}^{2}=\sum_{d=1}^{D} w_{d}^{2}$ is the ℓ_{2}-regularization or weight decay and λ is the regularization rate/parameter.

The Penalized Negative Log Likelihood (PNLL) is quite desirable to avoid overfitting. The gradient and hessian are given as:

$$
\begin{aligned}
& \nabla_{\mathbf{w}} P N L L(\mathbf{w})=\nabla_{\mathbf{w}} N L L(\mathbf{w})+2 \lambda \mathbf{w} \\
& \nabla_{\mathbf{w}} \nabla_{\mathbf{w}} P N L L(\mathbf{w})=\nabla_{\mathbf{w}} \nabla_{\mathbf{w}} N L L(\mathbf{w})+2 \lambda \mathbf{I}
\end{aligned}
$$

\rightarrow Standarization (Sec. 10.2.8)!

MULTINOMINAL LOGISTIC REGRESSION

Definition

Multinominal logistic regression is a discriminative classification model $p(y \mid \mathbf{x} ; \theta)=$ $\operatorname{Cat}(y \mid \operatorname{softmax}(W \mathbf{x}+\mathbf{b}))$, where $\mathbf{x} \in \mathbb{R}^{D}$ is a fixed-dimensional input vector, $\mathbf{y} \in$ $\{1, \ldots, C\}$ is the class label with $C>2$, and $\theta=(W, \mathbf{b})$ are the parameters with W as the weight matrix of $C \times D$, and \mathbf{b} as the C-dimensional bias vector.
$p\left(y_{c} \mid \mathbf{x} ; \theta\right)=\frac{e^{a_{c}}}{\sum_{c^{\prime}=1}^{C} e^{a_{c^{\prime}}}}$
Since $\sum_{c=1}^{C} p\left(y_{c} \mid \mathbf{x} ; \theta\right)=1$, one can ignore the weight vector w_{C} for the last class C, so the weight matrix W becomes of size $(C-1) \times D$.
When the labels are not mutually exclusive, then an input could have multiple output, i.e., multi-label classification, e.g, image tagging. In this particular case, $p\left(y_{c} \mid \mathbf{x} ; \theta\right)=\prod_{c=1}^{C} \operatorname{Ber}\left(y_{c} \mid \sigma\left(\mathbf{w}_{c}^{T} \mathbf{x}\right)\right)$.

SUMMARY

	Binary logistic Regression	Multinominal logistic regression
Probability $p(y \mid \mathbf{x} ; \theta)$	$\operatorname{Ber}\left(y \mid \sigma\left(w^{T} x+b\right)\right)$	$\operatorname{Cat}\left(y_{c} \mid \operatorname{softmax}\left(w^{T} x+b\right)\right)$
Activation function $\sigma(\cdot)$	softmax	
Cost function $H_{c e}$	$-[y \log \mu+(1-y) \log (1-\mu)]$	$-\sum_{c=1}^{C} y_{c} \log \mu_{c}$
Gradient	-	-
Hessian	-	-

DEMO

em learn

Questions

[^0]: ${ }^{2}$ Read Ch. 08 for more details about the optimization

