

MACHINE LEARNING

Linear Models: Logistic Regression

Last Update: 31st October 2022

Prof. Dr. Shadi Albarqouni

Director of Computational Imaging Research Lab. (Albarqouni Lab.) University Hopsital Bonn | University of Bonn | Helmholtz Munich

STRUCTURE

- 1. Logistic Regression
- 1.1 Decision boundary
- 1.2 Negative Log Likelihood (NLL)
- 1.3 Maximum likelihood estimation (MLE)
- 1.4 Maximum A Posterior (MAP)
- 1.5 Multinominal Logistic Regression

LOGISTIC REGRESSION

Definition

Logistic regression is a widely used discriminative classification model $p(y|\mathbf{x}; \theta)$, where $\mathbf{x} \in \mathbb{R}^D$ is a fixed-dimensional input vector, $\mathbf{y} \in \{1, \ldots, C\}$ is the class label, and θ are the parameters.

if C = 2, this is known as binary logistic regression, and if C > 2, it is known as multinomial logistic regression, or alternatively, multiclass logistic regression.

BINARY LOGISTIC REGRESSION

Example: classifying Iris flowers (Code)

Binary Logistic Regression | Sigmoid function | Linear classifier | Objective function

Given some inputs $x \in \mathcal{X}$ and a mapping function $f(\cdot)$ that predict a binary variable $y \in \{0, 1\}$, the conditional probability distribution $p(y|x; \theta) = \text{Ber}(y|f(x; \theta))$ where

$$p(y = 1|x; \theta) = f(x; \theta) \triangleq \sigma(\mathbf{w}^T \mathbf{x} + b)$$

$$\sigma(a) = \frac{1}{1+e^{-a}} \text{ is the sigmoid function}$$

$$a = \mathbf{w}^T \mathbf{x} + b \text{ is often called logits or}$$

pre-activation.

find ${\bf w}$ and b for the given example. ©2022 Shadi Albarqouni

HYPOTHESIS REPRESENTATION -- SIGMOID FUNCTION

©2022 Shadi Albarqouni

LINEAR CLASSIFIER -- DECISION BOUNDARY

$$\begin{aligned} f(\mathbf{x}) &= \mathbb{I}\left(p(y=1|\mathbf{x}) > p(y=0|\mathbf{x})\right) \\ &= \mathbb{I}\left(\log \frac{p(y=1|\mathbf{x})}{p(y=0|\mathbf{x})} > 0\right) \\ &= \mathbb{I}(a>0) \to \text{Perceptron} \end{aligned}$$

The inner product $\langle \mathbf{w}, \mathbf{x} \rangle$ defines the hyperplane with a normal vector \mathbf{w} and offset b.

This plane $\mathbf{w}^T \mathbf{x} + b = 0$ is often called the decision boundary seperating the 3d space into two halfs. We call the data to be linerally seperable if we can perfectly separate the training examples by such a (20222 Shad happer) boundary.

$$a = \mathbf{w}^T \mathbf{x} + b \triangleq b + \sum_{d=1}^D w_d x_d$$

More about dot products: watch this YouTube Video

Machine Learning

2022-10-31

- Logistic Regression
 - Decision boundary
 - Linear classifier– Decision boundary

Example: Given the data points on the right hand side, what would be your optimal decision boundary to make the data lineraly seperable?

$$\sigma(a) = \sigma(w^T x + b)$$

$$a = b + \sum_{d=1}^{D} w_d x_d \triangleq b + w_1 x_1 + w_2 x_2 = 0$$

what happens if we have larger values of w?

LINEAR CLASSIFIER -- DECISION BOUNDARY

The vector **w** defines the orientation of the decision boundary, and its magnitude, $||w||_2 = \sqrt{\sum_{d=1}^{D} w_d^2}$ controls the steepness of the sigmoid, and hence the confidence of the predictions.

NONLINEAR CLASSIFIER

We can often make a problem linearly separable by preprocessing the inputs in a suitable way.

let $\phi(\boldsymbol{x})$ be a transformed version of the input feature vector.

suppose we use $\phi(x_1, x_2) = [1; x_1^2; x_2^2]$, and we let $w = [-R^2; 1; 1]$. $w^T \phi(x) = -R^2 + x_1^2 + x_2^2$, so the decision boundary (where $w^T \phi(x) = 0$) defines a circle with radius R.

DEMO

Maximum likelihood estimation (MLE)

It can be obtained by minimizing the Negative Log Likelihood as an objective function

$$\theta_{MLE} = \operatorname*{arg\,min}_{\theta} NLL(\theta)$$

The Negative Log Likelihood (NLL) for the binary classification is given by $NLL(\mathbf{w}) = -\frac{1}{N} \log \prod_{n=1}^{N} \underbrace{\operatorname{Ber}(y_n | f(\mathbf{x}_n; \mathbf{w}))}_{p(y_n | x_n; \theta)} \triangleq -\frac{1}{N} \log \prod_{n=1}^{N} \operatorname{Ber}(y_n | \mu_n)$ where

 $\mu_n = f(\mathbf{x}_n; \mathbf{w}) = \sigma(a_n)$ is the prediction $a_n = \mathbf{w}^T \mathbf{x}_n = \sum_{d=0}^{D} w_d x_{nd}$ is the logit, with bias $w_0 = b$ and $x_0 = 1$.

The NLL can be written as $NLL(\mathbf{w}) = -\frac{1}{N} \sum_{n=1}^{N} y_n \log \mu_n + (1 - y_n) \log (1 - \mu_n)$

Machine Learning

- Logistic Regression
 - -Negative Log Likelihood (NLL)
 - Maximum likelihood estimation (MLE)

MAXIMUM LIKELINOOD ESTIMATION (MLE)

aximum likelihood estimation (MLE)

 $\theta_{MLE} = \arg\min NLL(\theta)$

The Negative Log Likelihood (NLL) for the binary classification is given by $NLL(\mathbf{w}) = -\frac{1}{2} \log \prod_{i=1}^{N} \operatorname{Ber}(u_i) f(\mathbf{x}_i; \mathbf{w}) \triangleq -\frac{1}{2} \log \prod_{i=1}^{N} \operatorname{Ber}(u_i|u_i) \text{ where }$ $\begin{array}{l} \mu_n=f(\mathbf{x}_n;\mathbf{w})=\sigma(a_n) \text{ is the prediction} \\ a_n=\mathbf{w}^T\mathbf{x}_n=\sum_{d=0}^D w_dx_{nd} \text{ is the logit, with bias } u_0=b \text{ and } m=1. \end{array}$

The NLL can be written as $NLL(\mathbf{w}) = -\frac{1}{2}\sum_{n=1}^{N} y_n \log \mu_n + (1 - y_n) \log (1 - \mu_n)$

Why Negative Log Likelihood? Indeed. why we need to take the Log? and why we need to take the negative?

What about other loss functions, e.g., Mean Squared Error?

2022-10-31

Machine Learning

2022-10-31

- Logistic Regression
 - └─Negative Log Likelihood (NLL)
 - Maximum likelihood estimation (MLE)

aximum likelihood estimation (MLE)

It can be obtained by minimizing the Negative Log Likelihood as an objective function

 $\theta_{MLE} = \arg \min NLL(e$

The Negative Log Likelihood (NLL) for the binary classification is given by $NLL(\mathbf{w}) = -\frac{1}{2}\log\prod_{n=1}^{N} \frac{\log r_n}{\log |\mathbf{u}_n|} (\mathbf{y}_n||\mathbf{w}_n) \triangleq -\frac{1}{2}\log\prod_{n=1}^{N} \log r(\mathbf{y}_n||\mathbf{u}_n) \text{ where } f(\mathbf{x}_n, \mathbf{w}) = \sigma(\mathbf{u}_n)$ is the prediction $a_n = \mathbf{w} \cdot \mathbf{x}_n = \sum_{n=1}^{N} a_{nn}$ is the logit, with bias $u_0 = b$ and $n_0 = 1$.

The NLL can be written as $NLL(\mathbf{w}) = -\frac{1}{N} \sum_{n=1}^{N} y_n \log \mu_n + (1 - y_n) \log (1 - \mu_n)$

Given $\text{Ber}(y|\theta) \triangleq \theta^y(1-\theta)^{1-y}$, the $NLL(\mathbf{w}) = -\frac{1}{N}\log\prod_{n=1}^N \text{Ber}(y_n|\mu_n)$, the objective function can be written as: $NLL(\mathbf{w}) = -\frac{1}{N}\log\prod_{n=1}^{N} \mathsf{Ber}(y_n|\mu_n)$ $= -rac{1}{N}\log\prod_{n=1}^{N}\mu_{n}^{y_{n}}(1-\mu_{n})^{1-y_{n}}$ $= -rac{1}{N}\sum_{n=1}^{N}\log\left[\mu_{n}^{y_{n}}(1-\mu_{n})^{1-y_{n}}
ight]$ $= -\frac{1}{N} \sum_{n=1}^{N} \underbrace{y_n \log \mu_n + (1 - y_n) \log (1 - \mu_n)}_{\mathbb{H}_{cc}(y_n, \mu_n) \quad \text{is the binary cross entropy}}$

2

²Read Ch.08 for more details about the optimization

Given the objective function, we aim to find the MLE solution by computing the gradient and solving

$$\begin{split} g(\mathbf{w}) &= \nabla_{\mathbf{w}} NLL(\mathbf{w}) = 0\\ \nabla_{\mathbf{w}} NLL(\mathbf{w}) &= \frac{1}{N} \sum_{n=1}^{N} (\mu_n - y_n) \mathbf{x}_n\\ \nabla_{\mathbf{w}} NLL(\mathbf{w}) &= \frac{1}{N} (\mathbf{1}_N^T (\text{diag}(\mu - \mathbf{y}) \mathbf{X}))^T \text{ in a matrix form} \end{split}$$

To ensure the objective function is **convex**, we must prove the **hessian** is positive semi-definite;

$$\mathbf{H} = \nabla_w \nabla_w NLL(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (\mu_n (1 - \mu_n) x_n) x_n^T$$
$$\mathbf{H} = \frac{1}{N} \mathbf{X}^T \mathbf{S} \mathbf{X} \text{ in a matrix form where}$$
$$\mathbf{S} \triangleq \text{diag}(\mu_1 (1 - \mu_1), \cdots, \mu_N (1 - \mu_N))$$

It can be shown that for any non-zero vector, v;

$$\mathbf{v}^T \mathbf{H} \mathbf{v} = \mathbf{v}^T \mathbf{X}^T \mathbf{S} \mathbf{X} \mathbf{v} = (\mathbf{v}^T \mathbf{X}^T \mathbf{S}^{\frac{1}{2}}) (\mathbf{S}^{\frac{1}{2}} \mathbf{X} \mathbf{v}) = \|\mathbf{S}^{\frac{1}{2}} \mathbf{X} \mathbf{v}\|_2^2 > 0$$

Given the gradient $\frac{1}{N}(1_N^T(\text{diag}(\mu - \mathbf{y})\mathbf{X}))^T$ and the hessian $\frac{1}{N}\mathbf{X}^T\mathbf{S}\mathbf{X}$ of the objective function, one can compute the stochastic gradient descent (Sec. 8.4) using

first-order method:

$$\omega_{t+1} = \omega_t - \eta_t \mathbf{g}_t \triangleq \omega_t - \eta_t \frac{1}{N} (\mathbf{1}_N^T (\operatorname{diag}(\mu_t - \mathbf{y}) \mathbf{X}))^T$$
$$\triangleq \omega_t - \eta_t \frac{1}{N} \sum_{n=1}^N (\mu_n - y_n) \mathbf{x_n}$$

slow convergence, when gradient is small

1: $w \leftarrow 0, \eta \leftarrow 1$ 2: repeat for n = 1: N do 3: $a_m \leftarrow \omega^T \mathbf{x}_m$ 4: 5: $\mu_n \leftarrow \sigma(a_n)$ $e_n \leftarrow (\mu_n - \eta_n)$ 6: 7: end for 8: $\mathbf{E} \leftarrow diag(e_{1 \cdot N})$ $\omega \leftarrow \omega - \eta \frac{1}{N} \mathbf{X}^T \mathbf{E}$ 9: 10: until Converged

Given the gradient $\frac{1}{N}(1_N^T(\text{diag}(\mu - \mathbf{y})\mathbf{X}))^T$ and the hessian $\frac{1}{N}\mathbf{X}^T\mathbf{S}\mathbf{X}$ of the objective function, one can compute the stochastic gradient descent (Sec. 8.4) using

second-order method:

$$\begin{split} \omega_{t+1} &= \omega_t - \eta_t \mathbf{H_t}^{-1} \mathbf{g}_t \triangleq \eta_t (\mathbf{X}^T \mathbf{S}_t \mathbf{X})^{-1} \mathbf{X}^T \mathbf{S}_t \mathbf{z}_t \\ \text{where } \mathbf{z}_t \triangleq \mathbf{X} \omega_t + \mathbf{S}_t^{-1} (\mathbf{y} - \mu_t) \end{split}$$

It is often called Iteratively reweighted least squares (IRLS)

1: $w \leftarrow 0, \eta \leftarrow 1$ 2: repeat 3. for $n = 1 \cdot N$ do $a_n \leftarrow \omega^T \mathbf{x}_n$ 4: $\mu_n \leftarrow \sigma(a_n)$ 5: $s_n \leftarrow \mu_n (1 - \mu_n)$ 6: 7: $z_n \leftarrow a_n + \frac{y_n - \mu_n}{2}$ end for 8: $\mathbf{S} \leftarrow diag(s_{1:N})$ 9: $\omega \leftarrow \eta (\mathbf{X}^T \mathbf{S} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{S} \mathbf{z}$ 10: 11: until Converged

VISUALIZATION

Source:https://towardsdatascience.com/ animations-of-logistic-regression-with-python-31f8c

OVERFITTING

MAXIMUM A POSTERIOR (MAP)

Maximum A Posterior (MAP)

It can be obtained by minimizing the Penalized Negative Log Likelihood as an objective function

$$\theta_{MAP} = \operatorname*{arg\,min}_{\theta} NLL(\theta) + \lambda \|\theta\|_2^2$$

where $\|\theta\|_2^2 = \sum_{d=1}^D w_d^2$ is the ℓ_2 -regularization or weight decay and λ is the regularization rate/parameter.

The Penalized Negative Log Likelihood (PNLL) is quite desirable to avoid overfitting. The gradient and hessian are given as:

$$\nabla_{\mathbf{w}} PNLL(\mathbf{w}) = \nabla_{\mathbf{w}} NLL(\mathbf{w}) + 2\lambda \mathbf{w}$$
$$\nabla_{\mathbf{w}} \nabla_{\mathbf{w}} PNLL(\mathbf{w}) = \nabla_{\mathbf{w}} \nabla_{\mathbf{w}} NLL(\mathbf{w}) + 2\lambda \mathbf{w}$$

 \rightarrow Standarization (Sec. 10.2.8)!

MULTINOMINAL LOGISTIC REGRESSION

Definition

Multinominal logistic regression is a discriminative classification model $p(y|\mathbf{x}; \theta) = Cat(y|\text{softmax}(W\mathbf{x} + \mathbf{b}))$, where $\mathbf{x} \in \mathbb{R}^D$ is a fixed-dimensional input vector, $\mathbf{y} \in \{1, \ldots, C\}$ is the class label with C > 2, and $\theta = (W, \mathbf{b})$ are the parameters with W as the weight matrix of $C \times D$, and \mathbf{b} as the C-dimensional bias vector.

$$p(y_c|\mathbf{x};\theta) = \frac{e^{a_c}}{\sum_{c'=1}^{C} e^{a_{c'}}}$$

Since $\sum_{c=1}^{C} p(y_c | \mathbf{x}; \theta) = 1$, one can ignore the weight vector w_C for the last class C, so the weight matrix W becomes of size $(C - 1) \times D$.

When the labels are not mutually exclusive, then an input could have multiple output, i.e., multi-label classification, e.g, image tagging. In this particular case, $p(y_c|\mathbf{x}; \theta) = \prod_{c=1}^{C} \text{Ber}(y_c|\sigma(\mathbf{w}_c^T \mathbf{x})).$

SUMMARY

	Binary logistic Regression	Multinominal logistic regression
Probability $p(y \mathbf{x}; heta)$	$Ber(y \sigma(w^Tx+b))$	$Cat(y_c softmax(w^Tx+b))$
Activation function $\sigma(\cdot)$	sigmoid	softmax
Cost function H_{ce}	$-[y \log \mu + (1 - y) \log (1 - \mu)]$	$-\sum_{c=1}^{C} y_c \log \mu_c$
Gradient	_	_
Hessian	_	-

Questions