
MACHINE LEARNING
Linear Models: Logistic Regression

Last Update: 31st October 2022

Prof. Dr. Shadi Albarqouni
Director of Computational Imaging Research Lab. (Albarqouni Lab.)
University Hopsital Bonn | University of Bonn | Helmholtz Munich



Structure Logistic Regression

STRUCTURE

1. Logistic Regression

1.1 Decision boundary

1.2 Negative Log Likelihood (NLL)

1.3 Maximum likelihood estimation (MLE)

1.4 Maximum A Posterior (MAP)

1.5 Multinominal Logistic Regression

©2022 Shadi Albarqouni 2



LOGISTIC REGRESSION



Structure Logistic Regression

Definition
Logistic regression is a widely used discriminative classification model p(y|x; θ),
where x ∈ RD is a fixed-dimensional input vector, y ∈ {1, . . . ,C} is the class la-
bel, and θ are the parameters.

if C = 2, this is known as binary logistic regression, and if C > 2, it is known as
multinomial logistic regression, or alternatively, multiclass logistic regression.
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Structure Logistic Regression

BINARY LOGISTIC REGRESSION

Example: classifying Iris flowers (Code)

Binary Logistic Regression| Sigmoid function | Linear classifier | Objective function

Given some inputs x ∈ X and a mapping
function f (·) that predict a binary variable
y ∈ {0, 1}, the conditional probability
distribution p(y|x; θ) = Ber(y|f (x; θ))
where

p(y = 1|x; θ) = f (x; θ) , σ(wTx+ b)
σ(a) = 1

1+e−a is the sigmoid function
a = wTx + b is often called logits or
pre-activation.
find w and b for the given example.
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https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/iris_logreg.ipynb


Structure Logistic Regression

HYPOTHESIS REPRESENTATION -- SIGMOID FUNCTION

What happens when a →∞?1 or a > 0?

Source: https://commons.wikimedia.org/wiki/File:Sigmoid-function-2.svg

1σ(·) , sig(·), and a , t
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Structure Logistic Regression

LINEAR CLASSIFIER-- DECISION BOUNDARY

f (x) = I (p(y = 1|x) > p(y = 0|x))

= I
(

log p(y = 1|x)
p(y = 0|x) > 0

)
= I(a > 0)→ Perceptron

The inner product 〈w, x〉 defines the hyperplane
with a normal vector w and offset b.
This plane wTx + b = 0 is often called the decision
boundary seperating the 3d space into two halfs.
We call the data to be lineraly seperable if we can
perfectly separate the training examples by such a
linear boundary.

a = wTx+b , b+
∑D

d=1 wdxd

More about dot products: watch this YouTube Video
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https://www.youtube.com/watch?v=LyGKycYT2v0
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Machine Learning
Logistic Regression

Decision boundary
Linear classifier– Decision boundary

Example: Given the data points on the right hand side,
what would be your optimal decision boundary to make
the data lineraly seperable?

σ(a) = σ(wTx + b)

a = b +
∑D

d=1 wdxd , b + w1x1 + w2x2 = 0

what happens if we have larger values of w?

https://www.youtube.com/watch?v=LyGKycYT2v0


Structure Logistic Regression

LINEAR CLASSIFIER -- DECISION BOUNDARY

The vector w defines the
orientation of the decision
boundary, and its magnitude,

‖w‖2 =
√∑D

d=1 w2
d controls

the steepness of the sigmoid,
and hence the confidence of
the predictions.

Play with the code
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https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/sigmoid_2d_plot.ipynb


Structure Logistic Regression

NONLINEAR CLASSIFIER

We can often make a problem linearly
separable by preprocessing the inputs in a
suitable way.

let φ(x) be a transformed version of the
input feature vector.
suppose we use φ(x1, x2) = [1; x2

1 ; x2
2 ], and

we let w = [−R2; 1; 1].
wTφ(x) = −R2 + x2

1 + x2
2 , so the decision

boundary (where wTφ(x) = 0) defines a
circle with radius R.
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Structure Logistic Regression

DEMO
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Structure Logistic Regression

MAXIMUM LIKELIHOOD ESTIMATION (MLE)

Maximum likelihood estimation (MLE)

It can be obtained by minimizing the Negative Log Likelihood as an objective function

θMLE = arg min
θ

NLL(θ)

The Negative Log Likelihood (NLL) for the binary classification is given by
NLL(w) = − 1

N log
∏N

n=1 Ber(yn|f (xn;w))︸ ︷︷ ︸
p(yn |xn ;θ)

, − 1
N log

∏N
n=1 Ber(yn|µn) where

µn = f (xn;w) = σ(an) is the prediction
an = wTxn =

∑D
d=0 wdxnd is the logit, with bias w0 = b and x0 = 1.

The NLL can be written as NLL(w) = − 1
N
∑N

n=1 yn logµn + (1− yn) log (1− µn)
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Negative Log Likelihood (NLL)
Maximum likelihood estimation (MLE)

Why Negative Log
Likelihood? Indeed,
why we need to take
the Log? and why we
need to take the
negative?

What about other loss
functions, e.g., Mean
Squared Error?
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Logistic Regression

Negative Log Likelihood (NLL)
Maximum likelihood estimation (MLE)

Given Ber(y|θ) , θy(1− θ)1−y , the NLL(w) = − 1
N log

∏N
n=1 Ber(yn|µn), the objective function

can be written as:
NLL(w) = − 1

N
log

N∏
n=1

Ber(yn|µn)

= − 1

N
log

N∏
n=1

µyn
n (1− µn)

1−yn

= − 1

N

N∑
n=1

log
[
µyn

n (1− µn)
1−yn

]
= − 1

N

N∑
n=1

yn logµn + (1− yn) log (1− µn)︸ ︷︷ ︸
Hce(yn,µn) is the binary cross entropy



Structure Logistic Regression

2

2Read Ch.08 for more details about the optimization
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Structure Logistic Regression

MAXIMUM LIKELIHOOD ESTIMATION (MLE)

Given the objective function, we aim to find the MLE solution
by computing the gradient and solving
g(w) = ∇wNLL(w) = 0

∇wNLL(w) = 1
N
∑N

n=1(µn − yn)xn

∇wNLL(w) = 1
N (1T

N (diag(µ− y)X))T in a matrix form
To ensure the objective function is convex, we must prove
the hessian is positive semi-definite;

H = ∇w∇wNLL(w) = 1
N
∑N

n=1(µn(1− µn)xn)xT
n

H = 1
N XTSX in a matrix form where

S , diag(µ1(1− µ1), · · · , µN (1− µN ))

It can be shown that for any non-zero vector, v;
vTHv = vTXTSXv = (vTXTS

1
2 )(S

1
2 Xv) = ‖S

1
2 Xv‖22 > 0 Play with the code
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https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/iris_logreg_loss_surface.ipynb


Structure Logistic Regression

MAXIMUM LIKELIHOOD ESTIMATION (MLE)

Given the gradient 1
N (1T

N (diag(µ− y)X))T and the
hessian 1

N XTSX of the objective function, one can
compute the stochastic gradient descent (Sec. 8.4)
using

first-order method:

ωt+1 = ωt − ηtgt , ωt − ηt
1

N
(1T

N (diag(µt − y)X))T

, ωt − ηt
1

N

N∑
n=1

(µn − yn)xn

slow convergence, when gradient is small

1: w ← 0, η ← 1
2: repeat
3: for n = 1 : N do
4: an ← ωTxn
5: µn ← σ(an)
6: en ← (µn − yn)
7: end for
8: E← diag(e1:N )
9: ω ← ω − η 1

N XTE
10: until Converged

©2022 Shadi Albarqouni 14



Structure Logistic Regression

MAXIMUM LIKELIHOOD ESTIMATION (MLE)

Given the gradient 1
N (1T

N (diag(µ− y)X))T and the
hessian 1

N XTSX of the objective function, one can
compute the stochastic gradient descent (Sec. 8.4)
using

second-order method:
ωt+1 = ωt − ηtHt

−1gt , ηt(XTStX)−1XTStzt
where zt , Xωt + S−1

t (y− µt)

It is often called Iteratively reweighted least
squares (IRLS)

1: w ← 0, η ← 1
2: repeat
3: for n = 1 : N do
4: an ← ωTxn
5: µn ← σ(an)
6: sn ← µn(1− µn)
7: zn ← an + yn−µn

sn
8: end for
9: S← diag(s1:N )
10: ω ← η(XTSX)−1XTSz
11: until Converged
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Structure Logistic Regression

VISUALIZATION

Play with the code
Play with the code Source:https://towardsdatascience.com/

animations-of-logistic-regression-with-python-31f8c9cb420
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https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/10/iris_logreg_loss_surface.ipynb
https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/08/steepestDescentDemo.ipynb
https://towardsdatascience.com/animations-of-logistic-regression-with-python-31f8c9cb420
https://towardsdatascience.com/animations-of-logistic-regression-with-python-31f8c9cb420


Structure Logistic Regression

OVERFITTING
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Structure Logistic Regression

MAXIMUM A POSTERIOR (MAP)

Maximum A Posterior (MAP)

It can be obtained byminimizing the PenalizedNegative Log Likelihood as an objective
function

θMAP = arg min
θ

NLL(θ) + λ‖θ‖22

where ‖θ‖22 =
∑D

d=1 w2
d is the `2-regularization or weight decay and λ is the regular-

ization rate/parameter.

The Penalized Negative Log Likelihood (PNLL) is quite desirable to avoid overfitting.
The gradient and hessian are given as:

∇wPNLL(w) = ∇wNLL(w) + 2λw
∇w∇wPNLL(w) = ∇w∇wNLL(w) + 2λI

→ Standarization (Sec. 10.2.8)!
©2022 Shadi Albarqouni 18



Structure Logistic Regression

MULTINOMINAL LOGISTIC REGRESSION

Definition
Multinominal logistic regression is a discriminative classification model p(y|x; θ) =
Cat(y|softmax(W x + b)), where x ∈ RD is a fixed-dimensional input vector, y ∈
{1, . . . ,C} is the class label withC > 2, and θ = (W ,b) are the parameters withW
as the weight matrix of C ×D, and b as the C−dimensional bias vector.

p(yc|x; θ) = eac∑C
c′=1

eac′

Since
∑C

c=1 p(yc|x; θ) = 1, one can ignore the weight vector wC for the last class
C , so the weight matrix W becomes of size (C − 1)×D.
When the labels are not mutually exclusive, then an input could have multiple
output, i.e., multi-label classification, e.g, image tagging. In this particular case,
p(yc|x; θ) =

∏C
c=1 Ber(yc|σ(wT

c x)).

©2022 Shadi Albarqouni 19



Structure Logistic Regression

SUMMARY

Binary logistic Regression Multinominal logistic regression
Probability p(y|x; θ) Ber(y|σ(wTx + b)) Cat(yc|softmax(wTx + b))
Activation function σ(·) sigmoid softmax
Cost function Hce − [y logµ+ (1− y) log (1− µ)] −

∑C
c=1 yc logµc

Gradient – –
Hessian – –
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Structure Logistic Regression

DEMO
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https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression


Structure Logistic Regression

Questions

©2022 Shadi Albarqouni 22
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