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LINEAR REGRESSION
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Structure Linear Regression

LINEAR REGRESSION -- HYPOTHESIS REPRESENTATION

Definition

Linear regression is a widely used regressionmodel p(y|x; θ) = N (y|wTx+b, σ2) for
predicting a real-valued output y ∈ R, given a fixed-dimensional input vector x ∈ RD

(also called independent variables, explanatory variables, or covariates) where θ =
(w, b, σ2) are the parameters with w as weights or regression coefficients and b or
w0 as the offset or bias term.

The key property of the model is that the expected value of the output is assumed to
be a linear function of the input, E[y|x] = wTx , which makes the model easy to
interpret, and easy to fit to data.
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Structure Linear Regression

TERMINOLOGY

Simple linear regression: The input is
one-dimensional (so D = 1), the model has the
form f (x;w) = ax + b, where b = w0 is the
intercept, and a = w1 is the slope.

Multiple linear regression: The input is
multi-dimensional, x ∈ RD where D > 1.
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Structure Linear Regression

TERMINOLOGY -- CONT.

Multivariate linear regression: The output is
multi-dimensional, y ∈ RJ where J > 1, and the
likelihood can be written as
p(y|x; θ) =

∏J
j=1N (yj |wT

j x, σ2
j )

Polynomial linear regression: A non-linear
transformation φ(·), e.g., a polynomial expanision of
degree d is applied to the input vector. Consider a
one-dimensional input (so D = 1), the
φ(x) = [1, x, x2, . . . , xd ] and the likelihood can be
written as p(y|x; θ) = N (y|wTφ(x), σ2)

Polynomial Linear Regression in for 1D and 2D inputs
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Structure Linear Regression

MAXIMUM LIKELIHOOD ESTIMATION (MLE)

Maximum Likelihood Estimation (MLE)

It can be obtained by minimizing the Negative Log Likelihood as an objective function

θMLE = arg min
θ

NLL(θ) where θ = (w, b, σ2) , (w, σ2)1

The Negative Log Likelihood (NLL) for the linear regression is given by
NLL(θ) = − log

∏N
n=1N (yn|wTxn + b, σ2)︸ ︷︷ ︸

p(yn |xn ;θ)

, 1
2σ2

∑N
n=1(yn − ŷn)

2 + N
2 log

(
2πσ2

)
where ŷn = f (xn;w) = wTxn is the prediction with bias w0 = b and x0 = 1.
The NLL is equal (up to irrelevant constants) to the residual sum of squares,
RSS(w) = 1

2

∑N
n=1(yn − ŷn)

2 = 1
2‖Xw − y‖22 = 1

2(Xw − y)T (Xw − y)
1b is included in w by simply adding a column with a value of 1 to the feature vector x1:D+1 = [1, x1:D]
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Structure Linear Regression

LINEAR REGRESSION AS SYSTEMS OF EQUATIONS

Linear regression problem as systems of
equations

y1 = w0 + w1x11 + · · ·+ wDx1D

y2 = w0 + w1x21 + · · ·+ wDx2D

. . .

yN = w0 + w1xN1 + · · ·+ wDxND

The system of equations can be written in
a matrix form as y = Xw with Y ∈ RN as
targets, X ∈ RN×D as design input matrix,
and w ∈ RD as the weight parameters.

if N < D, the system is
underdetermined, so there is not a
unique solution→ the minimal norm
solution is demonstarted
if N = D and w is full rank, there is a
single unique solution
if N > D, the system is
overdetermined, so there is no unique
solution→ the least square solution is
demonstarted

N < D N = D N > D©2022 Shadi Albarqouni 9
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Linear Regression

Terminology
Linear Regression as Systems of Equations

Given the following systems of equations,

2 = 3w1 + 2w2

−2 = 2w1 − 2w2

it can be written in the matrix form y = Xw as

y =

(
2
−2

)
, X =

(
3 2
2 −2

)
Since N = D, we can simply solve the systems using

w = X−1y = 1
|detX|

(
−2 −2
−2 3

)(
2
−2

)
=

(
0
1

)
.

What happens if:

we have only the first data point (equation)?

we have an additional data point 0 = −w1 + 3w2?



Structure Linear Regression

LEAST NORM ESTIMATION

When N < D (short and fat), the system is underdetermined, so there is not a unique
solution→ Least norm estimation?

Least Norm Estimation

ŵ = arg min
w

‖w‖22 s.t. Xw = y

The minimal norm solution is obtained using the right pseudo inverse:

wpinv = XT (XXT )−1︸ ︷︷ ︸
RN×N

y

Proof –> Have a look at Sec. 7.7.2 and Sec. 7.5.3
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Least Norm Estimation
Least Norm Estimation

What happens if:

we have only the first data point (equation)?

Given the following systems of equations,

2 = 3w1 + 2w2

it can be written in the matrix form y = Xw as
y = 2, X =

(
3 2

)
Since N < D, we can simply solve the systems using
wpinv = XT(XXT)−1y =(

3
2

)((
3 2

)( 3
2

))−1

(2) =

(
0.46
0.31

)
.



Structure Linear Regression

LEAST SQUARES ESTIMATION

When N > D (tall and skinny), the system is overdetermined, so there is no unique
solution→ Least square estimation?

Least Squares Estimation (LSE)

To find the solution that gets as close as possible to satisfying all of the constraints
specified by y = Xw, we need to minimize the following cost function, known as the
least squares objective

ŵ = arg min
w

1

2
‖Xw − y‖22

The corresponding solution known as ordinary least squares (OLS) is obtained using
the left pseudo inverse or by taking the derivative w.r.t w,∇wRSS(w) = 0,

XT (Xw − y) = 0 → wOLE = (XTX)−1︸ ︷︷ ︸
RD×D

XTy
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Least Squares Estimation
Least Squares Estimation

Let∇wRSS(w) = 0

∇w
1

2
(Xw − y)T(Xw − y) = 0

1

2
(2)XT(Xw − y) = 0

XTXw − XTy = 0

w = (XTX)−1XTy
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Least Squares Estimation
Least Squares Estimation

What happens if:

we have an additional data point 0 = −w1 + 3w2?

Given the following systems of equations,

2 = 3w1 + 2w2

−2 = 2w1 − 2w2

0 = −w1 + 3w2

it can be written in the matrix form y = Xw as

y =

 2
−2
0

 , X =

 3 2
2 −2
−1 3


Since N > D, we can simply solve the systems using
wOLE = (XTX)−1XTy =

(
0.18 0.48

)T
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GEOMETRIC INTERPRETATION OF LEAST SQUARES

Our objective is to find the optimal parameters that
minimizes the following objective function:

arg min
ŷ∈span([x:,1,...,x:,d ])

‖y − ŷ‖2

where x:,d is the dth−column of matrix X and ŷ = Xw is
the prediction which belongs to the span(X). Geometric representation2

It tunrs out that the shortest path with minimal distance (residuals) is the orthogonal
projection of y into the supspace span(X), i.e., x:,D ⊥ (y − ŷ). This is translated to:
xT
:,D(y − ŷ) = 0 → XT (y − Xw) , XTy − XTXw = 0, thus

wopt = (XTX)−1XTy → ordinary least squares (OLS).

2The figure considers b = Ax
©2022 Shadi Albarqouni 12
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xT
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Least Squares Estimation
Geometric Interpretation of least squares

Given the following systems of equations y = Xw as

y =

 2
−2
0

 , X =

 3 2
2 −2
−1 3

 ,

the geometric interpretation of the residual sum of
squares is presented on thr right hand side where 3

2
−1

w1 +

 2
−2
3

w2 =

 2
−2
0


wOLE = (XTX)−1XTy =

(
0.18 0.48

)T

ŷ = Proj(x)y =
(
1.49 −0.61 1.27

)T



Structure Linear Regression

Weighted Least Squares

In some cases, we want to associate a weight
with each example. For example, in heteroske-
dastic regression, the variance depends on the
input, so the model has the form p(y|x; θ) =
N (y|Xw,Λ−1) where Λ = diag(1/σ2(x))

ŵwLSE = (XTΛX)−1XTΛy
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Source:https://towardsdatascience.com/predicting-manhattan-rent-with-linear-regression-27766041d2d9
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Structure Linear Regression

ALGORITHMIC ISSUES

When N >> D (tall and skinny), the system is overdetermined, so there is no unique
solution→

wOLE = (XTX)−1︸ ︷︷ ︸
RD×D

XTy

numerical reasons – XTX may be ill conditioned or singular (look at this example)
alternative and less expesnive solutions are SVD and QR decompositions
alternative to direct methods based on matrix decomposition is iterative solvers
standarize the data (see Sec. 10.2.8)
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DEMO
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Structure Linear Regression

MEASURING GOODNESS OF FIT -- RESIDUAL PLOT

Residual plot for 1D
feature

Residual plot for
Multi-dimensional
feature
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Structure Linear Regression

MEASURING GOODNESS OF FIT -- PREDICTION ACCURACY AND R2

Residual Sum of Square (RSS): 12
∑N

n=1(yn − ŷn)
2

Root Mean Square Error (RMSE):
√

1
N RSS

Coefficient of determination: R2 = 1− RSS
TSS = 1−

∑N
n=1(yn−ŷn)2∑N
n=1(yn−ȳ)2
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Structure Linear Regression

RIDGE REGRESSION

Maximum likelihood estimation can result in overfitting. A simple solution to this is to
use MAP estimation with a zero-mean Gaussian prior on the weights,
p(w) = N (w|0, λ−1I ). This is called ridge regression.

Maximum A Posterior

ŵMAP = arg min
w

1

2
‖Xw − y‖22 + λ‖w‖22

The corresponding solution known as Maximum A Posterior (MAP) is obtained by
taking the derivative w.r.t w, e.g.,∇wRSS(w) + λ‖w‖22 = 0

wMAP = (XTX + λI )−1XTy
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Ridge Regression
Ridge Regression

∇wRSS(w) + λ‖w‖22 = 0

∇w(Xw − y)T(Xw − y) + λwTw , XT(Xw − y) + λIw = 0

XTXw − XTy + λIw , (XTX + λI )w − XTy = 0

wMAP = (XTX + λI )−1XTy
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LASSO REGRESSION

Sometimes we want the parameters to not just be small, but to be exactly zero
(compression), i.e., we want w to be sparse, so that we maximize the likelihood
p(w) = Laplace(w|0, λ−1)

Maximum A Posterior

ŵMAP = arg min
w

1

2
‖Xw − y‖22 + λ‖w‖1

where ‖w‖1 =
∑D

d=1 |w| is the `1-norm of w.
The corresponding solution known as Maximum A Posterior (MAP). This is mainly
used to perform feature selection
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LASSO VS. RIDGE REGRESSION

Lasso Ridge©2022 Shadi Albarqouni 21
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Questions
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