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NONLINEAR CLASSIFIER
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The non-linear transofmation φ(x) can be spedificed by hand; which is very limiting,

f (x; θ) = wTφ(x) + b where θ = (w, b)

A natural extension is to have a feature extractor with a new set of parameters;

f (x; θ) = wTφ(x; θ2) + b where θ = (θ1, θ2) and θ1 = (w, b)

To create more and more complex functions; one can repeat the same process
multiple times recursively,

f (x; θ) = fL(fL−1(. . . (f1(x; θ1) . . . ); θL−1); θL)

This is the key idea behind deep neural networks (DNNs). This is known as a
feedforward neural network (FFNN).
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MOTIVATION

Example: XOR Perceptron challenge

Heaviside function | Linear classifier | Perceptron

Perceptron:

H (a) = H (wTx + b)
= I(wTx + b > 0)

XOR Table:
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MOTIVATION

Example: Challenge accepted -- Multilayer Perceptron (MLP)

Heaviside function | Linear classifier | Perceptron

h1 = x1 + x2 − 1.5 , x1 ∧ x2
h2 = x1 + x2 − 0.5 , x1 ∨ x2
y = −h1 + h2 − 0.5

y = (x1 ∧ x2) ∧ (x1 ∨ x2)

Revisit the previous slide and show the
hyperplanes h1, h1 and y
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MULTILAYER PERCEPTRONS (MLPS)

Multilayer perceptrons (MLPs)

A multilayer perceptron (MLP) is a stack of perceptrons, each of which involved
the non-differentiable Heaviside function. This makes such models difficult to train,
which is why they were never widely used. MLP is also defined as a fully connected
class of feedforward neural network.

To make the MLPs differentiable, we replace the Heaviside function H : R → {0, 1}
with a differentiable activation function ψ : R → R.

hl = fl(hl−1) = ψl(bl + Wlhl−1) = ψ(al)

where al is the pre-activations and ψ(·) is the activation function
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This can be written in a scalar form as

hkl = ψl

bkl +

Kl−1∑
j=1

wjklhjl−1
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ACTIVATION FUNCTIONS

Linear functions? –No, this results in a simple linear classifier

f (x; θ) = WL(WL−1(. . . (W1x) . . . )) = WLWL−1 . . .W1x = Wx

Alternatives
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ACTIVATION FUNCTIONS

Why ReLU (Leaky-ReLU) is rather preferred over the sigmoid function?
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BACKPROPAGATION

The standard approach is to use maximum likelihood estimation, by minimizing NLL:

L(θ) = −
N∑

n=1

log p(yn|xn; θ)

It is also common to add a regularizer and minimizes the PNLL:

L(θ) = −
N∑

n=1

log p(yn|xn; θ)− λ log p(θ)

To optimize the objective function, we need to compute the gradient via
Backpropagation
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BACKPROPAGATION

To better understand the Backpropagation, let’s consider a mapping of the form
o = f (x), where x ∈ Rn and o ∈ Rm . We assume that f is defined as a composition of
functions:

f = f4 ◦ f3 ◦ f2 ◦ f1
The intermediate steps needed to compute o = f (x) are x2 = f1(x), x3 = f2(x2),
x4 = f3(x3), and o = f4(x4). We can compute the Jacobian Jf (x) = ∂o

∂x ∈ Rm×n using
the chain rule:

∂o
∂x

=
∂o
∂x4

∂x4
∂x3

∂x3
∂x2

∂x2
∂x

=
∂f4(x4)
∂x4

∂f3(x3)
∂x3

∂f2(x2)
∂x2

∂f1(x)
∂x
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BACKPROPAGATION

Example

Given the following loss function L(θ) = 1
2‖y−W2ψ(W1x)‖22, represent the forward

model and the gradient w.r.t the parameters.

Forward step: Backward step:
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BACKPROPAGATION
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DEMO
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http://bit.ly/3EOfe4z
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MLP FOR IMAGE CLASSIFICATION - MNIST

MNIST Dataset

The key idea is to either flatten the image into a
fixed-dimensional vector or exctract handcrafted features.
Does randomly shuffling the pixels affect the output of the
MLP model – presuming the same shuffle applies for all
inputs?
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http://yann.lecun.com/exdb/mnist/
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MLP FOR IMAGE CLASSIFICATION - MNIST

Recognition Model How many paramters in the MLP Recognition
model?
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https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/13/mlp_mnist_tf.ipynb
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MLP FOR HETREOSKEDASTIC REGRESSION

In linear regression: N (y|wT
µ x + b, σ+(wT

σ x))

How can we model the hetreoskedastic regression in MLPs?
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MLP FOR HETREOSKEDASTIC REGRESSION

In linear regression: N (y|wT
µ x + b, σ+(wT

σ x))

In MLP regression: N (y|wT
µ f (x; θshared), σ+(wT

σ f (x; θshared)))

Source: https://brendanhasz.github.io/2019/07/23/bayesian-density-net.html©2022 Shadi Albarqouni 20
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THE IMPORTANCE OF DEPTH

One can show that an MLP with one hidden layer is a universal function approximator,
meaning it can model any suitably smooth function, given enough hidden units, to any
desired level of accuracy. However, various arguments, both experimental and
theoretical have shown that deep networks work better than shallow ones. Take the
XOR challenge as an example.
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CHOOSING THE LEARNING RATE

We need to be careful in how we choose the learning rate in order to achieve
convergence.

Source: https://cs231n.github.io
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https://cs231n.github.io
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CHOOSING THE LEARNING RATE

Rather than choosing a single constant learning rate, we can use a learning rate
schedule, in which we adjust the step size over time.

piecewise constant: ηt = ηi if ti ≤ t ≤ ti+1

exponential decay: ηt = η0e−λt

polynomial decay: ηt = η0(βt + 1)−α
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WEIGHT INITIALIZATION

It has been shown that sampling parameters from a standard normal with fixed
variance can result in exploding activations or gradients.

Xavier initialization: σ2 = 2
nin+nout

→ linear, tanh, logistic, and softmax.

LeCun initialization: σ2 = 1
nin

→ SELU

He initialization: σ2 = 2
nin

→ ReLU and its variants.

where nin is the fan-in of a unit (number of incoming connections), and nout is the
fan-out of a unit (number of outgoing connections).
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CHOOSING HYPER-PRAMETERS

The recipe:
(1) Check the initial loss
(2) Overfit a small subset
(3) Find the learning rate that

lower the loss
(4) Coarse grid with a few epochs
(5) Refine grid with longer

epcohs
(6) Observe the loss and

accuracy

Source: https://cs231n.github.io/neural-networks-3/
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CHOOSING HYPER-PRAMETERS
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DEBUGGING THE MODEL
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Questions
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