LJ(b universitats u HELMHOLTZ

klinikumbonn universiTat MUNICI?

MACHINE LEARNING

Deep Neural Networks: Neural
Networks with Imaging Data

A '

Last Update: 16th December 2022

Prof. Dr. Shadi Albargouni Munich

Director of Computational Imaging Research Lab. (Albargouni Lab.) HELMHOLTZ
University Hopsital Bonn | University of Bonn | Helmholtz Munich MUNICH

Structure
€000

STRUCTURE
1. Introduction

1.1 Whatis ConvNets?

1.2 What's wrong with ANN?
2. Network Architecture

2.1 Notation

2.2 CNN Layers
3. Training ConvNets

3.1 Objective function

3.2 Optimization and Derivatives
4, What we learned?

4.1 Recap

©2022 g9 Alfematures 2

Structure
0000

MOTIVATION

=EET - EEEZS

EEES

ANEEOERER
ST P
dELRE=ESnEh

Training Set

©2022 $nipiesrbyuseparable feature Space? 3

OBJECT RECOGNITION: PIPELINE

Hierarchical and Non-linear feature representation (stacked layers) learned jointly with the classifier

Image

Since 1950's

©2022 Shadi Albargouni 4

Structure
000

CONVNETS SUCCESSES

A

ILSVRC

Challenge Skip Connections
Transfer Learning

ILSVRC GoogleNet

Challenge Inception Module am
reduce the parameters
ILSVRC
Tweaking

Challenge Hyperparameters
ImageNet,

ILSVRC
Challenge stacked .

icked Conv. Layers
(. J
Y
Zi Computation (GPU),
P Optimization (SGD),
%‘I”I::, Faster Convergence (ReLU),
q Avoid Overfitting (Dropout)
>
>
1990 2012 2013 2014 2015

©2022 Shadi Albargouni 5

INTRODUCTION

e Introduction Netwo
00

WHAT IS CONVNET?

Definition (ConvNet)

It is a member of Deep Learning family. It is similar to Artificial Neural Networks
(ANN), however, the connectivity pattern between its neuron is inspired by the hier-
archical organization of animal visual cortex [14] .

0@ .- ,
[
7/ .. / Complex composite cells (C2)
i
Z <z Composite feature cells (52)
= DN 7. Complex cells (C1)
~ i~
—0DN =208 =N Simple cells (51) c d .
~ 1 - .

— weighted sum
-- - max

©2022 Shadi Albargouni

Introduction
°

WHAT'S WRONG WITH ANN?

Hard to Train (over-fitting)
Careful Initialization
Huge number of parameters

Key ideas of ConvNets

image statistics (shared weights)
Low-level features supposed to be local (local connectivity)
High-level features supposed to be coarser (subsampling)

"Convolution + Activation + Pooling = Architecture”

©2022 Shadi Albargouni 8

NETWORK ARCHITECTURE

Filter

Input Image Bias Feature Map

l .
00 o . el

Convolutional Activation Pooling Layer
Layer Layer Average / Sum

Feature Map Sampled

Feature Map

Figure: Symbolic Architecture

o200 REfINE: receptive field, stride, depth and width of the network.

arqount 10

tructure

ntroduction Network Architecture Training ConvNets What we learned ts Debugging Transfer Learning Network Performance
00@000000000000000000000000 0OO0000 000

NOTATION
We follow the following notations
X is the input data, X = {2, 19, ..., zy} € REXWXDXN,
N is the number of input instances/samples.
H is the height of an image z;c n.
W is the width of an image z;cn.

D is the channels/depth of an image/volume z;c n.
Y is the desired output, Y = {1, 42, ..., yy} € RV

Objective
Build a model f that for a given input z can predict the output #:

y=f(zw),
where w is the model parameter.

©2022 Shadi Albargouni 11

tructure troduction Network Architecture

000800000000000000000000000 0000000

CNN LAYERS

A CNN Network can be obtained by cascading _ |
several layers in a directed acyclic graph (DAG). " Rl | o
Input Layer . o%ﬂg%

Convolutional Layer
Activation Layer

Pooling Layer - %?
Fully Connected Layer ‘
Dropout Layer | (5] j:
Output Layer %& Ji

©2022 Shadi Albargouni

12

Network Architecture
0®0000000000000000000000

INPUT LAYER (H x W x D x N)

Data Preprocessing (Mean subtraction, ‘ ‘ ‘
PCA/Whitening)

Data Augmentation: geometric transformation;
rotation and translation, color transformation:
illumination, staining ...etc, adding noise.

Splitting the dataset (training, validation and
testing)

Batch size

©2022 Shadi Albargouni 13

Network Architecture
00®000000000000000000000

INPUT LAYER (H x W x D x N)

2D inputs
Gray (D=1)
RGB (D = 3) [4]
2.5D inputs

Gray (D = 3) [15]

RGB-D (D = 4) [5]
3D inputs

Gray (D =d) [8]

©2022 Shadi Albargouni 14

Network Architecture
000®00000000000000000000

CONVOLUTIONAL LAYER (H” x W" x K x N)

Convolutional Layer
)

Activated

Input image feature maps

©2022 Shadi Albargouni 15

Network Architecture
0000®0000000000000000000

It computes the convolution of input image x with a filter f as follows

H W D

Yijk = bijr + E E § Jhw,d k- Tit-hj+w,ds

h=1w=1d=1

Filter

input z € RIXWxD
Bias

filters f € R W'xDxK
biases b € RH"*W"xK o é
output y € RE"xW"xK

stride Sw x and padding Pw &,

Convolutional
Layer

©2022 Shadi Albargouni 16

Network Architecture

[¢]
o]
(o]
o]
(o]
(o]
(o]
(o]
(o]
(o]
(o]
(o]
(o]
(o]
(o]
(o]
o]
[¢]
[]
(o]
(o]
(o]
(o]
[¢]

x[:,:,3]

x[:,:,2]

x[:,:,1]

o|o|o|o|lo|o|o o|lo|o
Ol || O|N| | O o| | o
O|lOoO|N|H|O| | O - | O o
Ol N|lH|H| H|O| O
POfPN | | —| o © o|o|o
fOo[i-[f—| o| o|o| o A = =
foffofo|o|o|o| o o|lo|o
o|o|o|o|o|o|o o|lo|«
O|l-H|H|H| +H| OO | | -
o|l-|~Nn|o|-H|~|o o|lo|o
ol~n|o|o|o|m|o
FofPn fo|m| | —| O o|o| o
POl PNl | | = O || o
fo[folfo|o|o|o| o o|lo| -
o|o|o|o|lo|o|o o|lo|o
oO|lNN|H[N| | O o - —
o|ld|N|H|N|—H|O —|ofo
Ol Nl Ol n| O
POfPN[i—|o| | = | O o|lo| -
SO BNl N N[N O o|l-|o
TO Ffoffo|o|o| oo -|oflo
ndu| 1914

f[:,:,1,2] f[:,5,2,1] f[:,:,2,2] f[:,:,3,1] f[:,:,3,2]

f[:,:,1,1]

b[:,:1]

selq

ndinQ

yl:,:1]

17

©2022 Shadi Albargouni

0O00000®00000000000000000

Example: CIFAR-10 (Convolution, 5 x 5 x 3 x 32)

Keywords: Translation Invariance, few parameters, local consistency

Input Image

32x32x%x3

Feature maps

H” x W" xK

W-W+@L+PR) oy H-H'+(Py+Pp)

W =1+
Sw SH

©2022 Shadi Albargouni 18

Network Architecture
000000080000000000000000

ACTIVATION LAYER (H x W x D x N)

Convolutional Layer
]

Activated

feature maps

1
]
]
|
]
|
|
]
|
|
]
'
]
1
|
Input image]
1
]
]
'
]
1
|

©2022 Shadi Albargouni 19

Network Architecture
000000008000000000000000

It computes the Rectified Linear Unit (ReLU) of each feature channel z as follows

Yij,d = max{0, z;j 4},

Feature Map
input z € REXWxD B
output y € REXWxD *oﬂzqﬂ
Actlvation
Layer

©2022 Shadi Albargouni 20

Network Architecture
000000000800000000000000

Image

]

)

1

|

]
1031 214 |3 | Feature Maps

3 i

g- 3(2(3 6|0(5 :
2(3 (1 -1(4 (0 5: .
x[:,:,1] x[:,:2] § : :
SI I
]
]
1
3 1
=)]
S]
o <)
51
yl::1] yl::2] g

©2022 Shadi Albargouni 21

Network Architecture
000000000080000000000000

Example: CIFAR-10 (ReLU)

Keywords: Simplifies Back-propagation, Makes Learning faster.

Feature maps

L
‘.U. .--ll

...l(I

Activated feature maps

©2022 Shadi Albargouni 22

Network Architecture
000000000008000000000000

What about other activation functions? Any potential drawbacks?

6 T T T T T 1

—tanh
5 :tsaig?noid 0.9~ —saié:lmtlzid -
softplus
_gcél'i%lus 08- —ReLpU 1
4+ 0.7 4
3 0.6
05 -
2
0.4
1 0.3
0.2
0
0.1
15 -4 3 2 1 0 1 2 3 4 5 0—5 4 -3 2 1
Figure: Activation functions Figure: Activation derivatives

©2022 Shadi Albargouni 23

Network Architecture
000000000000800000000000

POOLING LAYER (H” x W" x D x N)

Convolutional Layer Pooling Layer
)

=

A—

Activated

Input image feature maps

©2022 Shadi Albargouni 2

Network Architecture
0000000000000e0000000000

It computes the maximum or average response of each feature channel z within a 2D
patch p as follows

iid = max Tithoitw.d
Yi,j, < h< B S W i+h,j+w,d>

1
Yij,d = oW Z Lith,j+w,ds
1<h<H' 1<w< W/

Feature Map

input z € RIXWxD
patch p € RE'>*W — ‘&
output y € RE"xW"xD

Str'de SW}H aﬂd paddlﬂg PW’H Pooling Layer

Average / Sum

©2022 Shadi Albargouni 25

Network Architecture
000000000000008000000000

)
]
]
]
0(3(1 21413 FeamreMaps:AcﬁvaﬁonMaps
g8 |[3]2]3] [6]o]s "I
031 ola|o X I :
I
x[:,3,1]) £ :
g :
]
]
5 |3 6 i I
g Max. Pooling \
3 1
o]
L1l yl::2] %":
gl
2 3
Avg. Pooling
i1l yl::2]

©2022 Shadi Albargouni 26

Network Architecture
000000000000000e00000000

Example: CIFAR-10 (Max. Pooling, p =3 x 3,5 = 2)

Keywords: Invariance to small transformation, Larger receptive field

Activated feature maps

Subsampled feature maps

©2022 Shadi Albargouni 27

Network Architecture
0000000000000000e0000000

NORMALIZATION LAYER (H x W x D x N)

Convolutional Layer Pooling Layer

1 1
1 1
] |
1 1
| 1

) y |
| 1
| —— |
Y e— ! %
| 1
| |
| 1
' 1
] 1
1 1

ot : Activated : Subsampled
nput image ‘ feature maps . feature maps

] |
1 1
' |
] 1
1 1
| '

©2022 Shadi Albargouni 28

Network Architecture
00000000000000000e000000

It performs a cross-channel normalization at each spatial location as follows
-8

2
Yijd = Tijd | K+« E , Tij,d ;
dCD

where k, a, § are hyperparameters. It is usually called Local Response Normalization
(LRN).

input 2 € RIXWxD

output y € REXWxD

©2022 Shadi Albargouni 29

Network Architecture
000000000000000000e00000

Activation Maps

I
1
1
: Subsampled
" 3|3 6|5 H
2 [3]3 6(5 | @ :
- I
x[:,:1] x[:,5,2] = -
S1
e, :
1
I
= 9 1
5 across channels 1
v 1
]
1
1
cl
21
2y
o £l
3 | % 31
2 .
o
yl::1] yl:.:2]

©2022 Shadi Albargouni 30

Network Architecture
0000000000000000000e0000

Example: CIFAR-10 (LRN, k =0, a, 8 = 1)

Keywords: Within or Cross feature maps, Before or After Pooling, Have you spotted the mistake in the normalization process?

Subsampled feature maps

HxWxD
Normalized feature maps

©2022 Shadi Albargouni 31

Network Architecture
000000000000000000008000

FULLY CONNECTED LAYER (1 x 1 x K x N)

Convolutional Layer Pooling Layer Fully Convolutional Layer
1 1

=

A—

Activated
feature maps

Subsampled

Input image feature maps

©2022 Shadi Albargouni 32

Network Architecture
000000000000000000000e00

It computes the convolution of input feature maps z with a filter f as follows

H W D

Yigk = bigk T O DY frwdk-Tithjsw,ds

h=1 w=1 d=1

input z € RAXWxD

filters f € REXWxDXK e yse K such filters.
biases b € RI*1xK

output y € RIXIXK

stride and padding

©2022 Shadi Albargouni 33

Network Architecture
0000000000000000000000

—

|
|
|
|
Subsampled | Normalized
- |
5 1 |
2 1
= |
£ H :
§1 I
5! 1
S 1
51 1
2 '
1
|
|
1
1
- !
= gl
8§
21
21
5 .
2 |:| bias = [-2, -3, -5, -2]
£
3
o

y[::1]

©2022 Shadi Albargouni 34

Network Architecture
00000000000000000000000e

Loss Layer
Convolutional Layer Pooling Layer Fully Convolutional Layer i.e. Classifier

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 | 1 1

1 1 1 1
A— [[.
1 1 1 1

| | 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 | 1 1

1 1 1 1

1 1 1 1

Inputi : Activated : Subsampled : CNN Codes :
nputimage . feature maps . feature maps . Feature vector X
1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

' ' ' '

©2022 Shadi Albargouni 35

TRAINING CONVNETS

Training ConvNets
°

OBJECTIVE FUNCTION

What we have presented so far is the feed-forward propagation, however, to minimize
our objective function, we need to propagate back the gradients and update the
parameters.

The Objective function:

argmln*25 wl)"'v L)vy(Z))

Wiyee, WL

where f(z;w) is the model's output.
Solver: Stochastic Gradient Descent (SGD).

©2022 Shadi Albargouni 37

Training ConvNets
©0000

OPTIMIZATION AND DERIVATIVES

y Ground

Objective

Input
P function

Image

T

Parameters

Using the chain rule, the partial derivatives can be written as follows:
OF _0EOh 0E _0E0h
Or Oh Oz’ 0w Oh Ow

©2022 Shadi Albargouni 38

Training ConvNets
0®000

Vanilla update. The weight's update:

where 7 is the learning rate.
Momentum update. Using the momentum[16], The weight's update becomes:

Wit —wt——ZVKJ:y,)+ aVuw',

where « is the momentum.

©2022 Shadi Albargouni 39

Training ConvNets
0000

A

High Learning Rate
Low Learning Rate >

Actual
\ gradient step

Momentum "
Step

Gradient
Step

Loss function

Local minima

Global minima

Model parameters, weights

Figure: SGD & Learning Rate!

1http://imgur.com/a/qulp
©2022 Shadi Albargouni 40

http://imgur.com/a/Hqolp

Training ConvNets
00000

LOSSLAYER (1 x 1 x C x N)

The loss function ¢, mainly used in the training phase, is the cross entropy loss for
"classification purpose”

D
i)
ij d=1

or £5-norm for "regression purpose” as follows

Y= sz',j,c - xi,j,dH%a

©2022 Shadi Albargouni 41

s
2
(5}

z
>
5

(&}
o
=
o

=

[]
(o]
(o]
o]
[¢]

CNN Codes

—_—

Normalized

pawauuo) Ajin

[4]
x[:,:,4]

~
=

x[:,:,1]

nduj (yanaL punouo) |aqeq

ndinp

42

©2022 Shadi Albargouni

WHAT WE LEARNED?

RECAP

©2022 Shadi Albargouni

Convolutional Layer
]

Input image

|
l
1
|
1
|
|
1
|
|
1
|
1
|
|
1
|
l
1
|
1
|
|

| I

Activated
feature maps

we learned?

44

LOW/MID/HIGH LEVEL FEATURES

c) Layer 3

e) Receptive
ST 2 D ST Fields to Scale

| S A O s

2SS
2 LNz B

Figure: Low and Mid Level Features, Fig.5in[22]

©2022 Shadi Albargouni 45

d) Layer 4

Figure: High Level Features, Fig.5

©2022 Shadi Albargouni 46

What we learned?
.

INTERACTIVE EXAMPLE

Figure: LeNet5 Architecture, MNIST-10?

2 . H
©2022 Shach mgggdéladamharley.com/ nn_vis/cnn/2d.html i

https://adamharley.com/nn_vis/cnn/2d.html

CONVNETS DEBUGGING

ConvNets Debugging
000

NETWORK TRAINING

Model Check. Similar to any model-based machine learning, there are two types of
error source; 1) Bias and 2)Variance.

Fixed Data Size Fixed Model Complexity Fixed Model Complexity
A
N h
High Bias v:r?“
E Valldation Error
rror Validation Error Error
Desied | __ _ ________________
Preformance
7~ Training Emor

Training Emor

oesed N ______________
> ——————
> >
Model Complexity Data Size Data Size

How to fix High Bias? High Variance? [11]
High Variance: Getting more training data (data augmentation), smaller set of features, increase
regularization parameter, add more dropout.

High Bias: Getting larger set of features, deeper architecture.

©2022 Shadi Albargouni 49

NETWORK TRAINING

ConvNets Debugging
000

Example: Monitoring the training of tiny VGG model (30 Epochs)

©2022 Shadi Albargouni

objective

:
—train
---val |4

0.6

0.5

0.4

error
°
w

0.2

0.1

error
T T

—traintopterr

——traintop5err
valtopterr

- - -valtop5err

50

ConvNets Debugging
ooe

DROPOUT LAYER (1 x 1 x C x N) [17]

The dropout layer acts as a regularizer for the network to avoid overfitting. It is simply
"dropping out” some activation units and setting them to zero during the training
phase. It is similar to train thinner networks and do averaging.

(:ﬂ s

©2022 Shadi Albargouni 51

ConvNets Debugging
00

NETWORK DEBUGGING

Gradient Checks

One of the major problems with training a CNN deep model is vanishing/exploding
gradient [2].

Monitor gradient and activation across layers and epochs.

Try adding Batch Normalization layer, proper weight initialization [9].

ve2 = 102

weights ridden

mmmmmmmmm

o}
()
gc/(goooooo 5
0000000 0000
Y000 000

©2022 Shadi Albargouni 52

ConvNets Debugging
oe

NETWORK DEBUGGING
Example: Monitoring the gradient of tiny VGG model (Epoch 26)

coefficient ranges
T

05 .
o
2° T|Z 1 i+i I E
05 | I I
[2 4 6 8 10 12 14
2 | | |

biases
°
|
I
e
F—

2 1 1 1
0 2 4 6 8 10 12 14
100 T T T
50 — T —
2
R = T T
S
sl i
100 L L 4
0 2 4 6 8 10 12 14
2 T T T
g1 T 1
¢
50 i = = T

©2022 Shadi Albargouni AN » 4 6 s 10 12 14 53

ConvNets Debugging
o

NETWORK DEBUGGING

Sanity Checks

Check if you have an expected loss value (Hint: Set the regularization parameter
to Zero.)

Increasing the regularization parameter will increase the loss.

Overfit a very small subset of data.

Loss Checks
A Learning Rate A Batch Size A Overfitting
Loss High Leaming Loss Small Batch Loss
rete size Deep Network,
Features,
Regularization
Low Leamning Large Batch
rate Size

- A A -
»

» »
©2022 Shadi Albargouni Model Complexity Model Complexity Model Complexity 54

ConvNets Debugging
°

ADDITIONAL LAYERS

Deconvolutional Layer [22, 21]
Batch Normalization [6]
DropConnect [20]

©2022 Shadi Albargouni 55

ConvNets Debugging
©0000

EXAMPLE: FACIAL KEYPOINTS TUTORIAL

Dataset: Facial Keypoint Detection challenge,
Training: 7049 (96 x 96) gray images with 15
keypoints. Testing: 1783 images.

Loss function: Regression (MSE)

Parameters: Optimization: nesterov
momentum, Learning rate: 0.01, Momentum =
0.9.

Note: Image Courtesy of this example at [13], Facial keypoint challenge[7].

©2022 Shadi Albargouni 56

ConvNets Debugging
0®000

EXAMPLE: FACIAL KEYPOINTS TUTORIAL (CONT.)

One layer network (netl)

Network: One hidden layer, (9216, 100, 30) units.
Parameters: Numher nf Fnnrhs = 400N

102

©2022 Shadi Albargouni

3 L L H i
0 200 400 600 800 1000

57

ConvNets Debugging
00800

LeNet5 network (net2)

Network: Input, (Conv, maxPool)? + FC2, Output
Parameters: Number of Epochs = 1000.

T
netl train
netl valid

net2 train
net2 valid

loss

©2022 Shadi Albargouni 58

ConvNets Debugging
00000

LeNet5 network (net3)

Data Augmentation, only flipping 50% of datasets.
Parameters: Number of Epochs = 3000.

== net2 train
- - net2 valid

— net3 train
— net3 valid

loss.

[500 1000 1500 2000 2500 3000
epoch

©2022 Shadi Albargouni 59

ConvNets Debugging
00000

LeNet5 network (net4, net5)

Parameters: Learning Rate = 0.03-0.0001, Momentum = 0.9 - 0.999
with/without Data Augmentation

- - net4 train
- - net4 valid
— net5 train
— net5 valid

0 500 1000 1500 2000
epoch

©2022 Shadi Albargouni 60

TRANSFER LEARNING

tructure troduction Network Architecture

TRANSFER LEARNING

Learning from scratch. Inspired by some CNN architecture, you can design your own
network. However, you need tons of data.

Transfer Learning[10]. Once you don't have enough data, you can use the pre-trained
CNN models for the following tasks:

Extract features: The output of the last hidden layer before the softmax can be
used as features (CNN Codes) to train a linear SVM classifier.

Fine-tuning: You may need to propagate back your gradient to update the
weights, however, the weights of the first layers can be fixed during the
fine-tuning and update the weights of the higher layers.

©2022 Shadi Albargouni 62

tructure Introduction Netwo it ning ConvNe Wh > learnec ng Transfer Learning Network Performanc
000 ¢ 00000 000 000 00® 000

FINE-TUNING TRICKS

Pre-trained GNN model Pre-trained CNN model

(a) (b)

Pre-trained CNN model

() (@

-

Pre-trained CNN model

(a) Fine-tuning, (b) Train from scratch, initialize the weights of the first layers from a
pre-trained model, (c) Get the CNN codes and learn a linear SVM, (d) Get the CNN codes from
the mid-layers and learn a linear SVM.

©2022 Shadi Albargouni 63

NETWORK PERFORMANCE

Network Performance
000

HYPER-PARAMETERS: ADDITIONAL TOPICS

Optimization solver[3, 12].

Learning Rate Schedule[1]: The more intuitive way to choose the learning rate is
to set it high in the beginning (large step and faster), and then lower it down after
some epcohs (small step and slower), i.e. n = nit?f% or n = e Miter,
Momentum[18]

Batch Size: between 10 and few hundreds.

Weight Initialization[19].

©2022 Shadi Albargouni 65

Network Performan
ooe

REFERENCES

@ Yoshua Bengio.
Practical recommendations for gradient-based training of deep architectures.
In Neural Networks: Tricks of the Trade, pages 437-478. Springer, 2012.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi.

Learning long-term dependencies with gradient descent is difficult.
Neural Networks, IEEE Transactions on, 5(2):157-166, 1994,

Léon Bottou.

Stochastic gradient descent tricks.
In Neural Networks: Tricks of the Trade, pages 421-436. Springer, 2012.

David Eigen and Rob Fergus.

Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture.
arXiv preprint arXiv:1411.4734, 2014

Saurabh Gupta, Ross Girshick, Pablo Arbeldez, and Jitendra Malik.

Learning rich features from rgb-d images for object detection and segmentation.
In Computer Vision-ECCV 2014, pages 345-360. Springer, 2014,

) & & D E

Sergey loffe and Christian Szegedy.

Batch normalization: Accelerating deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015.

@ Kaggle.

Facial keypoints detection, May 2013.
©2022 @i AlkaFgatHtinos Kamnitsas, Liang Chen, Christian Ledig, Daniel Rueckert, and Ben Glocker. 66

	Structure
	Introduction
	What is ConvNets?
	What's wrong with ANN?

	Network Architecture
	Notation
	CNN Layers

	Training ConvNets
	Objective function
	Optimization and Derivatives

	What we learned?
	Recap
	Features
	Interactive Example

	ConvNets Debugging
	Regularization
	Gradient Check
	Sanity Check
	Loss Check
	Additional Layers
	Example

	Transfer Learning
	Network Performance

	anm14:
	14.47:
	14.46:
	14.45:
	14.44:
	14.43:
	14.42:
	14.41:
	14.40:
	14.39:
	14.38:
	14.37:
	14.36:
	14.35:
	14.34:
	14.33:
	14.32:
	14.31:
	14.30:
	14.29:
	14.28:
	14.27:
	14.26:
	14.25:
	14.24:
	14.23:
	14.22:
	14.21:
	14.20:
	14.19:
	14.18:
	14.17:
	14.16:
	14.15:
	14.14:
	14.13:
	14.12:
	14.11:
	14.10:
	14.9:
	14.8:
	14.7:
	14.6:
	14.5:
	14.4:
	14.3:
	14.2:
	14.1:
	14.0:
	anm13:
	13.4:
	13.3:
	13.2:
	13.1:
	13.0:
	anm12:
	12.2:
	12.1:
	12.0:
	anm11:
	11.8:
	11.7:
	11.6:
	11.5:
	11.4:
	11.3:
	11.2:
	11.1:
	11.0:
	anm10:
	10.8:
	10.7:
	10.6:
	10.5:
	10.4:
	10.3:
	10.2:
	10.1:
	10.0:
	anm9:
	9.1:
	9.0:
	anm8:
	8.4:
	8.3:
	8.2:
	8.1:
	8.0:
	anm7:
	7.9:
	7.8:
	7.7:
	7.6:
	7.5:
	7.4:
	7.3:
	7.2:
	7.1:
	7.0:
	anm6:
	6.1:
	6.0:
	anm5:
	5.17:
	5.16:
	5.15:
	5.14:
	5.13:
	5.12:
	5.11:
	5.10:
	5.9:
	5.8:
	5.7:
	5.6:
	5.5:
	5.4:
	5.3:
	5.2:
	5.1:
	5.0:
	anm4:
	4.25:
	4.24:
	4.23:
	4.22:
	4.21:
	4.20:
	4.19:
	4.18:
	4.17:
	4.16:
	4.15:
	4.14:
	4.13:
	4.12:
	4.11:
	4.10:
	4.9:
	4.8:
	4.7:
	4.6:
	4.5:
	4.4:
	4.3:
	4.2:
	4.1:
	4.0:
	anm3:
	3.7:
	3.6:
	3.5:
	3.4:
	3.3:
	3.2:
	3.1:
	3.0:
	anm2:
	2.47:
	2.46:
	2.45:
	2.44:
	2.43:
	2.42:
	2.41:
	2.40:
	2.39:
	2.38:
	2.37:
	2.36:
	2.35:
	2.34:
	2.33:
	2.32:
	2.31:
	2.30:
	2.29:
	2.28:
	2.27:
	2.26:
	2.25:
	2.24:
	2.23:
	2.22:
	2.21:
	2.20:
	2.19:
	2.18:
	2.17:
	2.16:
	2.15:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	anm1:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

