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MOTIVATION

Linearly separable feature Space?©2022 Shadi Albarqouni 3
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OBJECT RECOGNITION: PIPELINE

Hierarchical and Non-linear feature representation (stacked layers) learned jointly with the classifier
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CONVNETS SUCCESSES
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WHAT IS CONVNET?

Definition (ConvNet)

It is a member of Deep Learning family. It is similar to Artificial Neural Networks
(ANN), however, the connectivity pattern between its neuron is inspired by the hier-
archical organization of animal visual cortex [14] .

©2022 Shadi Albarqouni 7
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WHAT'S WRONG WITH ANN?

Hard to Train (over-fitting)
Careful Initialization
Huge number of parameters

Key ideas of ConvNets

image statistics (shared weights)
Low-level features supposed to be local (local connectivity)
High-level features supposed to be coarser (subsampling)

”Convolution + Activation + Pooling = Architecture”

©2022 Shadi Albarqouni 8
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NETWORK ARCHITECTURE

Figure: Symbolic Architecture

Define: receptive field, stride, depth and width of the network.
©2022 Shadi Albarqouni 10
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NOTATION

We follow the following notations

X is the input data, X = {x1, x2, ..., xN} ∈ RH×W×D×N .
N is the number of input instances/samples.
H is the height of an image xi∈N .
W is the width of an image xi∈N .
D is the channels/depth of an image/volume xi∈N .
Y is the desired output, Y = {y1, y2, ...., yN} ∈ Rc×N

Objective

Build a model f that for a given input x can predict the output ŷ:

ŷ = f(x;ω),

where ω is the model parameter.
©2022 Shadi Albarqouni 11
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CNN LAYERS

A CNN Network can be obtained by cascading
several layers in a directed acyclic graph (DAG).

Input Layer
Convolutional Layer
Activation Layer
Pooling Layer
Fully Connected Layer
Dropout Layer
Output Layer

©2022 Shadi Albarqouni 12
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INPUT LAYER (H × W × D × N )

Data Preprocessing (Mean subtraction,
PCA/Whitening)
Data Augmentation: geometric transformation;
rotation and translation, color transformation:
illumination, staining ...etc, adding noise.
Splitting the dataset (training, validation and
testing)
Batch size

©2022 Shadi Albarqouni 13
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INPUT LAYER (H × W × D × N )

2D inputs
Gray (D = 1)
RGB (D = 3) [4]

2.5D inputs
Gray (D = 3) [15]
RGB-D (D = 4) [5]

3D inputs
Gray (D = d) [8]

©2022 Shadi Albarqouni 14



Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

CONVOLUTIONAL LAYER (H ′′ × W ′′ × K × N )

©2022 Shadi Albarqouni 15
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It computes the convolution of input image x with a filter f as follows

yi,j,k = bi,j,k +

H ′∑
h=1

W ′∑
w=1

D∑
d=1

fh,w,d,k .xi+h,j+w,d ,

input x ∈ RH×W×D

filters f ∈ RH ′×W ′×D×K

biases b ∈ RH ′′×W ′′×K

output y ∈ RH ′′×W ′′×K

stride SW ,H and padding PW ,H ,

©2022 Shadi Albarqouni 16
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Example: CIFAR-10 (Convolution, 5× 5× 3× 32)
Keywords: Translation Invariance, few parameters, local consistency

©2022 Shadi Albarqouni 18
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ACTIVATION LAYER (H × W × D × N )

©2022 Shadi Albarqouni 19
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It computes the Rectified Linear Unit (ReLU) of each feature channel x as follows

yi,j,d = max{0, xi,j,d},

input x ∈ RH×W×D

output y ∈ RH×W×D

©2022 Shadi Albarqouni 20
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Example: CIFAR-10 (ReLU)
Keywords: Simplifies Back-propagation, Makes Learning faster.

©2022 Shadi Albarqouni 22
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What about other activation functions? Any potential drawbacks?

Figure: Activation functions Figure: Activation derivatives
©2022 Shadi Albarqouni 23
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POOLING LAYER (H ′′ × W ′′ × D × N )

©2022 Shadi Albarqouni 24
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It computes the maximum or average response of each feature channel x within a 2D
patch p as follows

yi,j,d = max
1≤h≤H ′,1≤w≤W ′

xi+h,j+w,d ,

yi,j,d =
1

H ′W ′

∑
1≤h≤H ′,1≤w≤W ′

xi+h,j+w,d ,

input x ∈ RH×W×D

patch p ∈ RH ′×W ′

output y ∈ RH ′′×W ′′×D

stride SW ,H and padding PW ,H

©2022 Shadi Albarqouni 25
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Example: CIFAR-10 (Max. Pooling, p = 3× 3,S = 2)
Keywords: Invariance to small transformation, Larger receptive field

©2022 Shadi Albarqouni 27
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NORMALIZATION LAYER (H × W × D × N )

©2022 Shadi Albarqouni 28
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It performs a cross-channel normalization at each spatial location as follows

yi,j,d = xi,j,d

(
κ+ α

∑
d⊂D

x2
i,j,d

)−β

,

where κ, α, β are hyperparameters. It is usually called Local Response Normalization
(LRN).

input x ∈ RH×W×D

output y ∈ RH×W×D

©2022 Shadi Albarqouni 29
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Example: CIFAR-10 (LRN, κ = 0, α, β = 1)
Keywords: Within or Cross feature maps, Before or After Pooling, Have you spotted the mistake in the normalization process?

©2022 Shadi Albarqouni 31
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FULLY CONNECTED LAYER (1× 1× K × N )

©2022 Shadi Albarqouni 32
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It computes the convolution of input feature maps x with a filter f as follows

yi,j,k = bi,j,k +

H∑
h=1

W∑
w=1

D∑
d=1

fh,w,d,k .xi+h,j+w,d ,

input x ∈ RH×W×D

filters f ∈ RH×W×D×K , we use K such filters.
biases b ∈ R1×1×K

output y ∈ R1×1×K

stride and padding

©2022 Shadi Albarqouni 33
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OBJECTIVE FUNCTION

What we have presented so far is the feed-forward propagation, however, to minimize
our objective function, we need to propagate back the gradients and update the
parameters.

The Objective function:

arg min
ω1,...,ωL

1

n

n∑
i=1

`(f(x(i);ω1, ..., ωL), y(i))

where f(x;ω) is the model’s output.
Solver: Stochastic Gradient Descent (SGD).

©2022 Shadi Albarqouni 37
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OPTIMIZATION AND DERIVATIVES

Using the chain rule, the partial derivatives can be written as follows:
∂E
∂x

=
∂E
∂h

∂h
∂x

,
∂E
∂ω

=
∂E
∂h

∂h
∂ω

©2022 Shadi Albarqouni 38
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Vanilla update. The weight’s update:

ωt+1 = ωt − η

n

n∑
i=1

∇`(x, y;ωt),

where η is the learning rate.
Momentum update. Using the momentum[16], The weight’s update becomes:

ωt+1 = ωt − η

n

n∑
i=1

∇`(x, y;ωt) + α∇ωt ,

where α is the momentum.

©2022 Shadi Albarqouni 39
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Figure: SGD & Learning Rate1

1http://imgur.com/a/Hqolp
©2022 Shadi Albarqouni 40
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LOSS LAYER (1× 1× C × N )

The loss function `, mainly used in the training phase, is the cross entropy loss for
”classification purpose”

y = −
∑
i,j

(
xi,j,clog

D∑
d=1

exp
{

xi,j,d
})

,

or `2-norm for ”regression purpose” as follows

y = ‖xi,j,c − xi,j,d‖22,

©2022 Shadi Albarqouni 41
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RECAP

©2022 Shadi Albarqouni 44



Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

LOW/MID/HIGH LEVEL FEATURES

Figure: Low and Mid Level Features, Fig.5 in[22]

©2022 Shadi Albarqouni 45
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Figure: High Level Features, Fig.5

©2022 Shadi Albarqouni 46
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INTERACTIVE EXAMPLE

Figure: LeNet5 Architecture, MNIST-102

2https://adamharley.com/nn_vis/cnn/2d.html
©2022 Shadi Albarqouni 47
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NETWORK TRAINING

Model Check. Similar to any model-based machine learning, there are two types of
error source; 1) Bias and 2)Variance.

How to fix High Bias? High Variance? [11]
High Variance: Getting more training data (data augmentation), smaller set of features, increase
regularization parameter, add more dropout.
High Bias: Getting larger set of features, deeper architecture.

©2022 Shadi Albarqouni 49
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NETWORK TRAINING

Example: Monitoring the training of tiny VGG model (30 Epochs)

©2022 Shadi Albarqouni 50
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DROPOUT LAYER (1× 1× C × N ) [17]

The dropout layer acts as a regularizer for the network to avoid overfitting. It is simply
”dropping out” some activation units and setting them to zero during the training
phase. It is similar to train thinner networks and do averaging.

©2022 Shadi Albarqouni 51
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NETWORK DEBUGGING

Gradient Checks

One of the major problems with training a CNN deep model is vanishing/exploding
gradient [2].
Monitor gradient and activation across layers and epochs.
Try adding Batch Normalization layer, proper weight initialization [9].

©2022 Shadi Albarqouni 52
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NETWORK DEBUGGING

Example: Monitoring the gradient of tiny VGG model (Epoch 26)

©2022 Shadi Albarqouni 53
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NETWORK DEBUGGING

Sanity Checks

Check if you have an expected loss value (Hint: Set the regularization parameter
to Zero.)
Increasing the regularization parameter will increase the loss.
Overfit a very small subset of data.

Loss Checks

©2022 Shadi Albarqouni 54
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ADDITIONAL LAYERS

Deconvolutional Layer [22, 21]
Batch Normalization [6]
DropConnect [20]

©2022 Shadi Albarqouni 55
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EXAMPLE: FACIAL KEYPOINTS TUTORIAL

Dataset: Facial Keypoint Detection challenge,
Training: 7049 (96 × 96) gray images with 15
keypoints. Testing: 1783 images.
Loss function: Regression (MSE)
Parameters: Optimization: nesterov
momentum, Learning rate: 0.01, Momentum =
0.9.

Note: Image Courtesy of this example at [13], Facial keypoint challenge[7].

©2022 Shadi Albarqouni 56
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EXAMPLE: FACIAL KEYPOINTS TUTORIAL (CONT.)

One layer network (net1)

Network: One hidden layer, (9216, 100, 30) units.
Parameters: Number of Epochs = 400.

©2022 Shadi Albarqouni 57
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LeNet5 network (net2)

Network: Input, (Conv, maxPool)3 + FC2, Output
Parameters: Number of Epochs = 1000.

©2022 Shadi Albarqouni 58
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LeNet5 network (net3)

Data Augmentation, only flipping 50% of datasets.
Parameters: Number of Epochs = 3000.

©2022 Shadi Albarqouni 59
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LeNet5 network (net4, net5)

Parameters: Learning Rate = 0.03-0.0001, Momentum = 0.9 - 0.999
with/without Data Augmentation

©2022 Shadi Albarqouni 60
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TRANSFER LEARNING

Learning from scratch. Inspired by some CNN architecture, you can design your own
network. However, you need tons of data.

Transfer Learning[10]. Once you don’t have enough data, you can use the pre-trained
CNN models for the following tasks:

Extract features: The output of the last hidden layer before the softmax can be
used as features (CNN Codes) to train a linear SVM classifier.
Fine-tuning: You may need to propagate back your gradient to update the
weights, however, the weights of the first layers can be fixed during the
fine-tuning and update the weights of the higher layers.

©2022 Shadi Albarqouni 62
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FINE-TUNING TRICKS

(a) Fine-tuning, (b) Train from scratch, initialize the weights of the first layers from a
pre-trained model, (c) Get the CNN codes and learn a linear SVM, (d) Get the CNN codes from
the mid-layers and learn a linear SVM.

©2022 Shadi Albarqouni 63
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HYPER-PARAMETERS: ADDITIONAL TOPICS

Optimization solver[3, 12].
Learning Rate Schedule[1]: The more intuitive way to choose the learning rate is
to set it high in the beginning (large step and faster), and then lower it down after
some epcohs (small step and slower), i.e. η = η0

niter+κ or η = η0e−κniter .
Momentum[18]
Batch Size: between 10 and few hundreds.
Weight Initialization[19].

©2022 Shadi Albarqouni 65
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