
MACHINE LEARNING
Deep Neural Networks: Neural
Networks with Imaging Data

Last Update: 16th December 2022

Prof. Dr. Shadi Albarqouni
Director of Computational Imaging Research Lab. (Albarqouni Lab.)
University Hopsital Bonn | University of Bonn | Helmholtz Munich

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

STRUCTURE
1. Introduction

1.1 What is ConvNets?

1.2 What’s wrong with ANN?
2. Network Architecture

2.1 Notation

2.2 CNN Layers
3. Training ConvNets

3.1 Objective function

3.2 Optimization and Derivatives
4. What we learned?

4.1 Recap

4.2 Features

4.3 Interactive Example
5. ConvNets Debugging

5.1 Regularization

5.2 Gradient Check

5.3 Sanity Check

5.4 Loss Check

5.5 Additional Layers

5.6 Example
6. Transfer Learning
7. Network Performance

©2022 Shadi Albarqouni 2

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

MOTIVATION

Linearly separable feature Space?©2022 Shadi Albarqouni 3

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

OBJECT RECOGNITION: PIPELINE

Hierarchical and Non-linear feature representation (stacked layers) learned jointly with the classifier

©2022 Shadi Albarqouni 4

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

CONVNETS SUCCESSES

©2022 Shadi Albarqouni 5

INTRODUCTION

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

WHAT IS CONVNET?

Definition (ConvNet)

It is a member of Deep Learning family. It is similar to Artificial Neural Networks
(ANN), however, the connectivity pattern between its neuron is inspired by the hier-
archical organization of animal visual cortex [14] .

©2022 Shadi Albarqouni 7

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

WHAT'S WRONG WITH ANN?

Hard to Train (over-fitting)
Careful Initialization
Huge number of parameters

Key ideas of ConvNets

image statistics (shared weights)
Low-level features supposed to be local (local connectivity)
High-level features supposed to be coarser (subsampling)

”Convolution + Activation + Pooling = Architecture”

©2022 Shadi Albarqouni 8

NETWORK ARCHITECTURE

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

NETWORK ARCHITECTURE

Figure: Symbolic Architecture

Define: receptive field, stride, depth and width of the network.
©2022 Shadi Albarqouni 10

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

NOTATION

We follow the following notations

X is the input data, X = {x1, x2, ..., xN} ∈ RH×W×D×N .
N is the number of input instances/samples.
H is the height of an image xi∈N .
W is the width of an image xi∈N .
D is the channels/depth of an image/volume xi∈N .
Y is the desired output, Y = {y1, y2,, yN} ∈ Rc×N

Objective

Build a model f that for a given input x can predict the output ŷ:

ŷ = f(x;ω),

where ω is the model parameter.
©2022 Shadi Albarqouni 11

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

CNN LAYERS

A CNN Network can be obtained by cascading
several layers in a directed acyclic graph (DAG).

Input Layer
Convolutional Layer
Activation Layer
Pooling Layer
Fully Connected Layer
Dropout Layer
Output Layer

©2022 Shadi Albarqouni 12

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

INPUT LAYER (H × W × D × N)

Data Preprocessing (Mean subtraction,
PCA/Whitening)
Data Augmentation: geometric transformation;
rotation and translation, color transformation:
illumination, staining ...etc, adding noise.
Splitting the dataset (training, validation and
testing)
Batch size

©2022 Shadi Albarqouni 13

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

INPUT LAYER (H × W × D × N)

2D inputs
Gray (D = 1)
RGB (D = 3) [4]

2.5D inputs
Gray (D = 3) [15]
RGB-D (D = 4) [5]

3D inputs
Gray (D = d) [8]

©2022 Shadi Albarqouni 14

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

CONVOLUTIONAL LAYER (H ′′ × W ′′ × K × N)

©2022 Shadi Albarqouni 15

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

It computes the convolution of input image x with a filter f as follows

yi,j,k = bi,j,k +

H ′∑
h=1

W ′∑
w=1

D∑
d=1

fh,w,d,k .xi+h,j+w,d ,

input x ∈ RH×W×D

filters f ∈ RH ′×W ′×D×K

biases b ∈ RH ′′×W ′′×K

output y ∈ RH ′′×W ′′×K

stride SW ,H and padding PW ,H ,

©2022 Shadi Albarqouni 16

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

©2022 Shadi Albarqouni 17

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

Example: CIFAR-10 (Convolution, 5× 5× 3× 32)
Keywords: Translation Invariance, few parameters, local consistency

©2022 Shadi Albarqouni 18

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

ACTIVATION LAYER (H × W × D × N)

©2022 Shadi Albarqouni 19

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

It computes the Rectified Linear Unit (ReLU) of each feature channel x as follows

yi,j,d = max{0, xi,j,d},

input x ∈ RH×W×D

output y ∈ RH×W×D

©2022 Shadi Albarqouni 20

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

©2022 Shadi Albarqouni 21

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

Example: CIFAR-10 (ReLU)
Keywords: Simplifies Back-propagation, Makes Learning faster.

©2022 Shadi Albarqouni 22

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

What about other activation functions? Any potential drawbacks?

Figure: Activation functions Figure: Activation derivatives
©2022 Shadi Albarqouni 23

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

POOLING LAYER (H ′′ × W ′′ × D × N)

©2022 Shadi Albarqouni 24

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

It computes the maximum or average response of each feature channel x within a 2D
patch p as follows

yi,j,d = max
1≤h≤H ′,1≤w≤W ′

xi+h,j+w,d ,

yi,j,d =
1

H ′W ′

∑
1≤h≤H ′,1≤w≤W ′

xi+h,j+w,d ,

input x ∈ RH×W×D

patch p ∈ RH ′×W ′

output y ∈ RH ′′×W ′′×D

stride SW ,H and padding PW ,H

©2022 Shadi Albarqouni 25

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

©2022 Shadi Albarqouni 26

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

Example: CIFAR-10 (Max. Pooling, p = 3× 3,S = 2)
Keywords: Invariance to small transformation, Larger receptive field

©2022 Shadi Albarqouni 27

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

NORMALIZATION LAYER (H × W × D × N)

©2022 Shadi Albarqouni 28

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

It performs a cross-channel normalization at each spatial location as follows

yi,j,d = xi,j,d

(
κ+ α

∑
d⊂D

x2
i,j,d

)−β

,

where κ, α, β are hyperparameters. It is usually called Local Response Normalization
(LRN).

input x ∈ RH×W×D

output y ∈ RH×W×D

©2022 Shadi Albarqouni 29

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

©2022 Shadi Albarqouni 30

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

Example: CIFAR-10 (LRN, κ = 0, α, β = 1)
Keywords: Within or Cross feature maps, Before or After Pooling, Have you spotted the mistake in the normalization process?

©2022 Shadi Albarqouni 31

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

FULLY CONNECTED LAYER (1× 1× K × N)

©2022 Shadi Albarqouni 32

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

It computes the convolution of input feature maps x with a filter f as follows

yi,j,k = bi,j,k +

H∑
h=1

W∑
w=1

D∑
d=1

fh,w,d,k .xi+h,j+w,d ,

input x ∈ RH×W×D

filters f ∈ RH×W×D×K , we use K such filters.
biases b ∈ R1×1×K

output y ∈ R1×1×K

stride and padding

©2022 Shadi Albarqouni 33

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

©2022 Shadi Albarqouni 34

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

©2022 Shadi Albarqouni 35

TRAINING CONVNETS

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

OBJECTIVE FUNCTION

What we have presented so far is the feed-forward propagation, however, to minimize
our objective function, we need to propagate back the gradients and update the
parameters.

The Objective function:

arg min
ω1,...,ωL

1

n

n∑
i=1

`(f(x(i);ω1, ..., ωL), y(i))

where f(x;ω) is the model’s output.
Solver: Stochastic Gradient Descent (SGD).

©2022 Shadi Albarqouni 37

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

OPTIMIZATION AND DERIVATIVES

Using the chain rule, the partial derivatives can be written as follows:
∂E
∂x

=
∂E
∂h

∂h
∂x

,
∂E
∂ω

=
∂E
∂h

∂h
∂ω

©2022 Shadi Albarqouni 38

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

Vanilla update. The weight’s update:

ωt+1 = ωt − η

n

n∑
i=1

∇`(x, y;ωt),

where η is the learning rate.
Momentum update. Using the momentum[16], The weight’s update becomes:

ωt+1 = ωt − η

n

n∑
i=1

∇`(x, y;ωt) + α∇ωt ,

where α is the momentum.

©2022 Shadi Albarqouni 39

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

Figure: SGD & Learning Rate1

1http://imgur.com/a/Hqolp
©2022 Shadi Albarqouni 40

http://imgur.com/a/Hqolp

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

LOSS LAYER (1× 1× C × N)

The loss function `, mainly used in the training phase, is the cross entropy loss for
”classification purpose”

y = −
∑
i,j

(
xi,j,clog

D∑
d=1

exp
{

xi,j,d
})

,

or `2-norm for ”regression purpose” as follows

y = ‖xi,j,c − xi,j,d‖22,

©2022 Shadi Albarqouni 41

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

©2022 Shadi Albarqouni 42

WHAT WE LEARNED?

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

RECAP

©2022 Shadi Albarqouni 44

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

LOW/MID/HIGH LEVEL FEATURES

Figure: Low and Mid Level Features, Fig.5 in[22]

©2022 Shadi Albarqouni 45

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

Figure: High Level Features, Fig.5

©2022 Shadi Albarqouni 46

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

INTERACTIVE EXAMPLE

Figure: LeNet5 Architecture, MNIST-102

2https://adamharley.com/nn_vis/cnn/2d.html
©2022 Shadi Albarqouni 47

https://adamharley.com/nn_vis/cnn/2d.html

CONVNETS DEBUGGING

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

NETWORK TRAINING

Model Check. Similar to any model-based machine learning, there are two types of
error source; 1) Bias and 2)Variance.

How to fix High Bias? High Variance? [11]
High Variance: Getting more training data (data augmentation), smaller set of features, increase
regularization parameter, add more dropout.
High Bias: Getting larger set of features, deeper architecture.

©2022 Shadi Albarqouni 49

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

NETWORK TRAINING

Example: Monitoring the training of tiny VGG model (30 Epochs)

©2022 Shadi Albarqouni 50

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

DROPOUT LAYER (1× 1× C × N) [17]

The dropout layer acts as a regularizer for the network to avoid overfitting. It is simply
”dropping out” some activation units and setting them to zero during the training
phase. It is similar to train thinner networks and do averaging.

©2022 Shadi Albarqouni 51

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

NETWORK DEBUGGING

Gradient Checks

One of the major problems with training a CNN deep model is vanishing/exploding
gradient [2].
Monitor gradient and activation across layers and epochs.
Try adding Batch Normalization layer, proper weight initialization [9].

©2022 Shadi Albarqouni 52

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

NETWORK DEBUGGING

Example: Monitoring the gradient of tiny VGG model (Epoch 26)

©2022 Shadi Albarqouni 53

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

NETWORK DEBUGGING

Sanity Checks

Check if you have an expected loss value (Hint: Set the regularization parameter
to Zero.)
Increasing the regularization parameter will increase the loss.
Overfit a very small subset of data.

Loss Checks

©2022 Shadi Albarqouni 54

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

ADDITIONAL LAYERS

Deconvolutional Layer [22, 21]
Batch Normalization [6]
DropConnect [20]

©2022 Shadi Albarqouni 55

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

EXAMPLE: FACIAL KEYPOINTS TUTORIAL

Dataset: Facial Keypoint Detection challenge,
Training: 7049 (96 × 96) gray images with 15
keypoints. Testing: 1783 images.
Loss function: Regression (MSE)
Parameters: Optimization: nesterov
momentum, Learning rate: 0.01, Momentum =
0.9.

Note: Image Courtesy of this example at [13], Facial keypoint challenge[7].

©2022 Shadi Albarqouni 56

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

EXAMPLE: FACIAL KEYPOINTS TUTORIAL (CONT.)

One layer network (net1)

Network: One hidden layer, (9216, 100, 30) units.
Parameters: Number of Epochs = 400.

©2022 Shadi Albarqouni 57

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

LeNet5 network (net2)

Network: Input, (Conv, maxPool)3 + FC2, Output
Parameters: Number of Epochs = 1000.

©2022 Shadi Albarqouni 58

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

LeNet5 network (net3)

Data Augmentation, only flipping 50% of datasets.
Parameters: Number of Epochs = 3000.

©2022 Shadi Albarqouni 59

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

LeNet5 network (net4, net5)

Parameters: Learning Rate = 0.03-0.0001, Momentum = 0.9 - 0.999
with/without Data Augmentation

©2022 Shadi Albarqouni 60

TRANSFER LEARNING

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

TRANSFER LEARNING

Learning from scratch. Inspired by some CNN architecture, you can design your own
network. However, you need tons of data.

Transfer Learning[10]. Once you don’t have enough data, you can use the pre-trained
CNN models for the following tasks:

Extract features: The output of the last hidden layer before the softmax can be
used as features (CNN Codes) to train a linear SVM classifier.
Fine-tuning: You may need to propagate back your gradient to update the
weights, however, the weights of the first layers can be fixed during the
fine-tuning and update the weights of the higher layers.

©2022 Shadi Albarqouni 62

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

FINE-TUNING TRICKS

(a) Fine-tuning, (b) Train from scratch, initialize the weights of the first layers from a
pre-trained model, (c) Get the CNN codes and learn a linear SVM, (d) Get the CNN codes from
the mid-layers and learn a linear SVM.

©2022 Shadi Albarqouni 63

NETWORK PERFORMANCE

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

HYPER-PARAMETERS: ADDITIONAL TOPICS

Optimization solver[3, 12].
Learning Rate Schedule[1]: The more intuitive way to choose the learning rate is
to set it high in the beginning (large step and faster), and then lower it down after
some epcohs (small step and slower), i.e. η = η0

niter+κ or η = η0e−κniter .
Momentum[18]
Batch Size: between 10 and few hundreds.
Weight Initialization[19].

©2022 Shadi Albarqouni 65

Structure Introduction Network Architecture Training ConvNets What we learned? ConvNets Debugging Transfer Learning Network Performance

REFERENCES

Yoshua Bengio.
Practical recommendations for gradient-based training of deep architectures.
In Neural Networks: Tricks of the Trade, pages 437–478. Springer, 2012.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi.
Learning long-term dependencies with gradient descent is difficult.
Neural Networks, IEEE Transactions on, 5(2):157–166, 1994.

Léon Bottou.
Stochastic gradient descent tricks.
In Neural Networks: Tricks of the Trade, pages 421–436. Springer, 2012.

David Eigen and Rob Fergus.
Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture.
arXiv preprint arXiv:1411.4734, 2014.

Saurabh Gupta, Ross Girshick, Pablo Arbeláez, and Jitendra Malik.
Learning rich features from rgb-d images for object detection and segmentation.
In Computer Vision–ECCV 2014, pages 345–360. Springer, 2014.

Sergey Ioffe and Christian Szegedy.
Batch normalization: Accelerating deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015.

Kaggle.
Facial keypoints detection, May 2013.

Konstantinos Kamnitsas, Liang Chen, Christian Ledig, Daniel Rueckert, and Ben Glocker.
Multi-scale 3d convolutional neural networks for lesion segmentation in brain mri.
Ischemic Stroke Lesion Segmentation, page 13, 2015.

Philipp Krähenbühl, Carl Doersch, Jeff Donahue, and Trevor Darrell.
Data-dependent initializations of convolutional neural networks.
arXiv preprint arXiv:1511.06856, 2015.

Fei-Fei Li and Andrej Karpathy.
Cs231n: Convolutional neural networks for visual recognition, 2015.

Andrew Ng.
Advice for applying machine learning.
CS229 Class Notes, 2009.

Jiquan Ngiam, Adam Coates, Ahbik Lahiri, Bobby Prochnow, Quoc V Le, and Andrew Y Ng.
On optimization methods for deep learning.
In Proceedings of the 28th International Conference on Machine Learning (ICML-11), pages 265–272, 2011.

Daniel Nouri.
Using convolutional neural nets to detect facial keypoints tutorial, December 2014.

Maximilian Riesenhuber and Tomaso Poggio.
Hierarchical models of object recognition in cortex.
Nature neuroscience, 2(11):1019–1025, 1999.

Holger R Roth, Le Lu, Ari Seff, Kevin M Cherry, Joanne Hoffman, Shijun Wang, Jiamin Liu, Evrim Turkbey, and Ronald M Summers.
A new 2.5 d representation for lymph node detection using random sets of deep convolutional neural network observations.
In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2014, pages 520–527. Springer, 2014.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams.
Learning representations by back-propagating errors.
Cognitive modeling, 5(3):1, 1988.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton.
On the importance of initialization and momentum in deep learning.
In Proceedings of the 30th international conference on machine learning (ICML-13), pages 1139–1147, 2013.

Rene Wagner, Markus Thom, Roland Schweiger, Gunther Palm, and Albrecht Rothermel.
Learning convolutional neural networks from few samples.
In Neural Networks (IJCNN), The 2013 International Joint Conference on, pages 1–7. IEEE, 2013.

Li Wan, Matthew Zeiler, Sixin Zhang, Yann L Cun, and Rob Fergus.
Regularization of neural networks using dropconnect.
In Proceedings of the 30th International Conference on Machine Learning (ICML-13), pages 1058–1066, 2013.

Matthew D Zeiler and Rob Fergus.
Visualizing and understanding convolutional networks.
In Computer vision–ECCV 2014, pages 818–833. Springer, 2014.

Matthew D Zeiler, Graham W Taylor, and Rob Fergus.
Adaptive deconvolutional networks for mid and high level feature learning.
In Computer Vision (ICCV), 2011 IEEE International Conference on, pages 2018–2025. IEEE, 2011.

©2022 Shadi Albarqouni 66

	Structure
	Introduction
	What is ConvNets?
	What's wrong with ANN?

	Network Architecture
	Notation
	CNN Layers

	Training ConvNets
	Objective function
	Optimization and Derivatives

	What we learned?
	Recap
	Features
	Interactive Example

	ConvNets Debugging
	Regularization
	Gradient Check
	Sanity Check
	Loss Check
	Additional Layers
	Example

	Transfer Learning
	Network Performance

	anm14:
	14.47:
	14.46:
	14.45:
	14.44:
	14.43:
	14.42:
	14.41:
	14.40:
	14.39:
	14.38:
	14.37:
	14.36:
	14.35:
	14.34:
	14.33:
	14.32:
	14.31:
	14.30:
	14.29:
	14.28:
	14.27:
	14.26:
	14.25:
	14.24:
	14.23:
	14.22:
	14.21:
	14.20:
	14.19:
	14.18:
	14.17:
	14.16:
	14.15:
	14.14:
	14.13:
	14.12:
	14.11:
	14.10:
	14.9:
	14.8:
	14.7:
	14.6:
	14.5:
	14.4:
	14.3:
	14.2:
	14.1:
	14.0:
	anm13:
	13.4:
	13.3:
	13.2:
	13.1:
	13.0:
	anm12:
	12.2:
	12.1:
	12.0:
	anm11:
	11.8:
	11.7:
	11.6:
	11.5:
	11.4:
	11.3:
	11.2:
	11.1:
	11.0:
	anm10:
	10.8:
	10.7:
	10.6:
	10.5:
	10.4:
	10.3:
	10.2:
	10.1:
	10.0:
	anm9:
	9.1:
	9.0:
	anm8:
	8.4:
	8.3:
	8.2:
	8.1:
	8.0:
	anm7:
	7.9:
	7.8:
	7.7:
	7.6:
	7.5:
	7.4:
	7.3:
	7.2:
	7.1:
	7.0:
	anm6:
	6.1:
	6.0:
	anm5:
	5.17:
	5.16:
	5.15:
	5.14:
	5.13:
	5.12:
	5.11:
	5.10:
	5.9:
	5.8:
	5.7:
	5.6:
	5.5:
	5.4:
	5.3:
	5.2:
	5.1:
	5.0:
	anm4:
	4.25:
	4.24:
	4.23:
	4.22:
	4.21:
	4.20:
	4.19:
	4.18:
	4.17:
	4.16:
	4.15:
	4.14:
	4.13:
	4.12:
	4.11:
	4.10:
	4.9:
	4.8:
	4.7:
	4.6:
	4.5:
	4.4:
	4.3:
	4.2:
	4.1:
	4.0:
	anm3:
	3.7:
	3.6:
	3.5:
	3.4:
	3.3:
	3.2:
	3.1:
	3.0:
	anm2:
	2.47:
	2.46:
	2.45:
	2.44:
	2.43:
	2.42:
	2.41:
	2.40:
	2.39:
	2.38:
	2.37:
	2.36:
	2.35:
	2.34:
	2.33:
	2.32:
	2.31:
	2.30:
	2.29:
	2.28:
	2.27:
	2.26:
	2.25:
	2.24:
	2.23:
	2.22:
	2.21:
	2.20:
	2.19:
	2.18:
	2.17:
	2.16:
	2.15:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	anm1:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

