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OBJECT RECOGNITION: PIPELINE

Hierarchical and Non-linear feature representation (stacked layers) learned jointly with the classifier

Image

Since 1950's
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WHAT IS CONVNET?

Definition (ConvNet)

It is a member of Deep Learning family. It is similar to Artificial Neural Networks
(ANN), however, the connectivity pattern between its neuron is inspired by the hier-
archical organization of animal visual cortex [14] .

0@ .- ,
[
7/ .. / Complex composite cells (C2)
i
Z <z Composite feature cells (52)
= DN 7. Complex cells (C1)
~ i~
—0DN =208 =N Simple cells (51) c d .
~ 1 - .

— weighted sum
-- - max

©2022 Shadi Albargouni




Introduction
°

WHAT'S WRONG WITH ANN?

Hard to Train (over-fitting)
Careful Initialization
Huge number of parameters

Key ideas of ConvNets

image statistics (shared weights)
Low-level features supposed to be local (local connectivity)
High-level features supposed to be coarser (subsampling)

"Convolution + Activation + Pooling = Architecture”
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Input Image Bias Feature Map

l .
00 o . el
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Feature Map

Figure: Symbolic Architecture

o200 REfINE: receptive field, stride, depth and width of the network.
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NOTATION
We follow the following notations
X is the input data, X = {2, 19, ..., zy} € REXWXDXN,
N is the number of input instances/samples.
H is the height of an image z;c n.
W is the width of an image z;cn.

D is the channels/depth of an image/volume z;c n.
Y is the desired output, Y = {1, 42, ..., yy} € RV

Objective
Build a model f that for a given input z can predict the output #:

y=f(zw),
where w is the model parameter.

©2022 Shadi Albargouni 11



tructure troduction  Network Architecture

000800000000000000000000000 0000000

CNN LAYERS

A CNN Network can be obtained by cascading _ |
several layers in a directed acyclic graph (DAG). " Rl | o
Input Layer . o%ﬂg%

Convolutional Layer
Activation Layer

Pooling Layer - %?
Fully Connected Layer ‘
Dropout Layer | (5] j:
Output Layer %& Ji
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Network Architecture
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INPUT LAYER (H x W x D x N)

Data Preprocessing (Mean subtraction, ‘ ‘ ‘
PCA/Whitening)

Data Augmentation: geometric transformation;
rotation and translation, color transformation:
illumination, staining ...etc, adding noise.

Splitting the dataset (training, validation and
testing)

Batch size
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INPUT LAYER (H x W x D x N)

2D inputs
Gray (D=1)
RGB (D = 3) [4]
2.5D inputs

Gray (D = 3) [15]

RGB-D (D = 4) [5]
3D inputs

Gray (D =d) [8]
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CONVOLUTIONAL LAYER (H” x W" x K x N)

Convolutional Layer
)

Activated

Input image feature maps
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Network Architecture
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It computes the convolution of input image x with a filter f as follows

H W D

Yijk = bijr + E E § Jhw,d k- Tit-hj+w,ds

h=1w=1d=1

Filter

input z € RIXWxD
Bias

filters f € R W'xDxK
biases b € RH"*W"xK o é
output y € RE"xW"xK

stride Sw x and padding Pw &,

Convolutional
Layer
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Network Architecture
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Example: CIFAR-10 (Convolution, 5 x 5 x 3 x 32)

Keywords: Translation Invariance, few parameters, local consistency

Input Image

32x32x%x3

Feature maps

H” x W" xK

W-W+@L+PR) oy H-H'+(Py+Pp)

W =1+
Sw SH
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Network Architecture
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ACTIVATION LAYER (H x W x D x N)

Convolutional Layer
]

Activated

feature maps

1
]
]
|
]
|
|
]
|
|
]
'
]
1
|
Input image ]
1
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]
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1
|
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000000008000000000000000

It computes the Rectified Linear Unit (ReLU) of each feature channel z as follows

Yij,d = max{0, z;j 4},

Feature Map
input z € REXWxD B
output y € REXWxD *oﬂzqﬂ
Actlvation
Layer
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Image
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Example: CIFAR-10 (ReLU)

Keywords: Simplifies Back-propagation, Makes Learning faster.

Feature maps

L
‘.U. .--ll

...l( I

Activated feature maps
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What about other activation functions? Any potential drawbacks?

6 T T T T T 1

—tanh
5 :tsaig?noid 0.9~ —saié:lmtlzid -
softplus
_gcél'i%lus 08- —ReLpU 1
4+ 0.7 4
3 0.6
05 -
2
0.4
1 0.3
0.2
0
0.1
15 -4 3 2 1 0 1 2 3 4 5 0—5 4 -3 2 1
Figure: Activation functions Figure: Activation derivatives
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POOLING LAYER (H” x W" x D x N)

Convolutional Layer Pooling Layer
)

=

A—

Activated

Input image feature maps
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It computes the maximum or average response of each feature channel z within a 2D
patch p as follows

iid = max Tithoitw.d
Yi,j, < h< B S W i+h,j+w,d>

1
Yij,d = oW Z Lith,j+w,ds
1<h<H' 1<w< W/

Feature Map

input z € RIXWxD
patch p € RE'>*W — ‘&
output y € RE"xW"xD

Str'de SW}H aﬂd paddlﬂg PW’H Pooling Layer

Average / Sum

©2022 Shadi Albargouni 25
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Example: CIFAR-10 (Max. Pooling, p =3 x 3,5 = 2)

Keywords: Invariance to small transformation, Larger receptive field

Activated feature maps

Subsampled feature maps
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NORMALIZATION LAYER (H x W x D x N)

Convolutional Layer Pooling Layer

1 1
1 1
] |
1 1
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00000000000000000e000000

It performs a cross-channel normalization at each spatial location as follows
-8

2
Yijd = Tijd | K+« E , Tij,d ;
dCD

where k, a, § are hyperparameters. It is usually called Local Response Normalization
(LRN).

input 2 € RIXWxD

output y € REXWxD
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Activation Maps
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Example: CIFAR-10 (LRN, k =0, a, 8 = 1)

Keywords: Within or Cross feature maps, Before or After Pooling, Have you spotted the mistake in the normalization process?

Subsampled feature maps

HxWxD
Normalized feature maps
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FULLY CONNECTED LAYER (1 x 1 x K x N)

Convolutional Layer Pooling Layer Fully Convolutional Layer
1 1

=

A—

Activated
feature maps

Subsampled

Input image feature maps
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Network Architecture
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It computes the convolution of input feature maps z with a filter f as follows

H W D

Yigk = bigk T O DY frwdk-Tithjsw,ds

h=1 w=1 d=1

input z € RAXWxD

filters f € REXWxDXK e yse K such filters.
biases b € RI*1xK

output y € RIXIXK

stride and padding

©2022 Shadi Albargouni 33
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Network Architecture
00000000000000000000000e

Loss Layer
Convolutional Layer Pooling Layer Fully Convolutional Layer i.e. Classifier

1 1 1 1

1 1 1 1
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A— [ [ .
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| | 1 1
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1 1 1 1

1 1 1 1

1 1 1 1
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1 1 1 1
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Training ConvNets
°

OBJECTIVE FUNCTION

What we have presented so far is the feed-forward propagation, however, to minimize
our objective function, we need to propagate back the gradients and update the
parameters.

The Objective function:

argmln*25 wl)"'v L)vy(Z))

Wiyee, WL

where f(z;w) is the model's output.
Solver: Stochastic Gradient Descent (SGD).

©2022 Shadi Albargouni 37



Training ConvNets
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OPTIMIZATION AND DERIVATIVES

y Ground

Objective

Input
P function

Image

T

Parameters

Using the chain rule, the partial derivatives can be written as follows:
OF _0EOh 0E _0E0h
Or  Oh Oz’ 0w  Oh Ow

©2022 Shadi Albargouni 38



Training ConvNets
0®000

Vanilla update. The weight's update:

where 7 is the learning rate.
Momentum update. Using the momentum[16], The weight's update becomes:

Wit —wt——ZVKJ:y, )+ aVuw',

where « is the momentum.

©2022 Shadi Albargouni 39



Training ConvNets
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A

High Learning Rate
Low Learning Rate >

Actual
\ gradient step

Momentum "
Step

Gradient
Step

Loss function

Local minima

Global minima

Model parameters, weights

Figure: SGD & Learning Rate!

1http://imgur.com/a/qulp
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Training ConvNets
00000

LOSSLAYER (1 x 1 x C x N)

The loss function ¢, mainly used in the training phase, is the cross entropy loss for
"classification purpose”

D
i)
ij d=1

or £5-norm for "regression purpose” as follows

Y= sz',j,c - xi,j,dH%a

©2022 Shadi Albargouni 41
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RECAP
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Convolutional Layer
]

Input image

|
l
1
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1
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1
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l
1
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1
|
|

| I

Activated
feature maps

we learned?
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LOW/MID/HIGH LEVEL FEATURES

c) Layer 3

e) Receptive
ST 2 D ST Fields to Scale

| S A O s

2SS
2 LNz B

Figure: Low and Mid Level Features, Fig.5in[22]
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d) Layer 4

Figure: High Level Features, Fig.5
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What we learned?
.

INTERACTIVE EXAMPLE

Figure: LeNet5 Architecture, MNIST-10?

2 . H
©2022 Shach mgggdéladamharley.com/ nn_vis/cnn/2d.html i
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ConvNets Debugging
000

NETWORK TRAINING

Model Check. Similar to any model-based machine learning, there are two types of
error source; 1) Bias and 2)Variance.

Fixed Data Size Fixed Model Complexity Fixed Model Complexity
A
N h
High Bias v:r?“
E Valldation Error
rror Validation Error Error
Desied | __ _ ________________
Preformance
7~ Training Emor

Training Emor

oesed N ______________
> ——————
> >
Model Complexity Data Size Data Size

How to fix High Bias? High Variance? [11]
High Variance: Getting more training data (data augmentation), smaller set of features, increase
regularization parameter, add more dropout.

High Bias: Getting larger set of features, deeper architecture.
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NETWORK TRAINING

ConvNets Debugging
000

Example: Monitoring the training of tiny VGG model (30 Epochs)

©2022 Shadi Albargouni

objective
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—train
---val |4
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ConvNets Debugging
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DROPOUT LAYER (1 x 1 x C x N) [17]

The dropout layer acts as a regularizer for the network to avoid overfitting. It is simply
"dropping out” some activation units and setting them to zero during the training
phase. It is similar to train thinner networks and do averaging.

(:ﬂ s
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ConvNets Debugging
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NETWORK DEBUGGING

Gradient Checks

One of the major problems with training a CNN deep model is vanishing/exploding
gradient [2].

Monitor gradient and activation across layers and epochs.

Try adding Batch Normalization layer, proper weight initialization [9].

ve2 = 102

weights  ridden

mmmmmmmmm

o}
()
gc/(goooooo 5
0000000 0000
Y000 000
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ConvNets Debugging
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NETWORK DEBUGGING
Example: Monitoring the gradient of tiny VGG model (Epoch 26)

coefficient ranges
T

05 .
o
2° T|Z 1 i+i I E
05 | I I
[ 2 4 6 8 10 12 14
2 | | |

biases
°
|
I
e
F—

2 1 1 1
0 2 4 6 8 10 12 14
100 T T T
50 — T —
2
R = T T
S
sl i
100 L L 4
0 2 4 6 8 10 12 14
2 T T T
g1 T 1
¢
50 i = = T
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ConvNets Debugging
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NETWORK DEBUGGING

Sanity Checks

Check if you have an expected loss value (Hint: Set the regularization parameter
to Zero.)

Increasing the regularization parameter will increase the loss.

Overfit a very small subset of data.

Loss Checks
A Learning Rate A Batch Size A Overfitting
Loss High Leaming Loss Small Batch Loss
rete size Deep Network,
Features,
Regularization
Low Leamning Large Batch
rate Size

- A A -
»

» »
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ConvNets Debugging
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ADDITIONAL LAYERS

Deconvolutional Layer [22, 21]
Batch Normalization [6]
DropConnect [20]
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ConvNets Debugging
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EXAMPLE: FACIAL KEYPOINTS TUTORIAL

Dataset: Facial Keypoint Detection challenge,
Training: 7049 (96 x 96) gray images with 15
keypoints. Testing: 1783 images.

Loss function: Regression (MSE)

Parameters: Optimization: nesterov
momentum, Learning rate: 0.01, Momentum =
0.9.

Note: Image Courtesy of this example at [13], Facial keypoint challenge[7].

©2022 Shadi Albargouni 56



ConvNets Debugging
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EXAMPLE: FACIAL KEYPOINTS TUTORIAL (CONT.)

One layer network (netl)

Network: One hidden layer, (9216, 100, 30) units.
Parameters: Numher nf Fnnrhs = 400N

102

©2022 Shadi Albargouni
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ConvNets Debugging
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LeNet5 network (net2)

Network: Input, (Conv, maxPool)? + FC2, Output
Parameters: Number of Epochs = 1000.

T
netl train
netl valid

net2 train
net2 valid

loss

©2022 Shadi Albargouni 58



ConvNets Debugging
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LeNet5 network (net3)

Data Augmentation, only flipping 50% of datasets.
Parameters: Number of Epochs = 3000.

== net2 train
- - net2 valid

— net3 train
— net3 valid

loss.

[ 500 1000 1500 2000 2500 3000
epoch
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ConvNets Debugging
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LeNet5 network (net4, net5)

Parameters: Learning Rate = 0.03-0.0001, Momentum = 0.9 - 0.999
with/without Data Augmentation

- - net4 train
- - net4 valid
— net5 train
— net5 valid

0 500 1000 1500 2000
epoch
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tructure troduction Network Architecture

TRANSFER LEARNING

Learning from scratch. Inspired by some CNN architecture, you can design your own
network. However, you need tons of data.

Transfer Learning[10]. Once you don't have enough data, you can use the pre-trained
CNN models for the following tasks:

Extract features: The output of the last hidden layer before the softmax can be
used as features (CNN Codes) to train a linear SVM classifier.

Fine-tuning: You may need to propagate back your gradient to update the
weights, however, the weights of the first layers can be fixed during the
fine-tuning and update the weights of the higher layers.

©2022 Shadi Albargouni 62
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FINE-TUNING TRICKS

Pre-trained GNN model Pre-trained CNN model

(a) (b)

Pre-trained CNN model

() (@

-

Pre-trained CNN model

(a) Fine-tuning, (b) Train from scratch, initialize the weights of the first layers from a
pre-trained model, (c) Get the CNN codes and learn a linear SVM, (d) Get the CNN codes from
the mid-layers and learn a linear SVM.
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Network Performance
000

HYPER-PARAMETERS: ADDITIONAL TOPICS

Optimization solver[3, 12].

Learning Rate Schedule[1]: The more intuitive way to choose the learning rate is
to set it high in the beginning (large step and faster), and then lower it down after
some epcohs (small step and slower), i.e. n = nit?f% or n = e Miter,
Momentum[18]

Batch Size: between 10 and few hundreds.

Weight Initialization[19].
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