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WHY WE NEED SUBSPACE METHODS?

Image adopted from Sakaue, Saori, et al. ”Dimensionality reduction reveals fine-scale structure in the Japanese population with consequences for polygenic
risk prediction.” Nature communications 11.1 (2020): 1-11.
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NOTATION

XT = {x1, x2, ..., xN}T ∈ Rd×N is the data set.
d is the feature dimension of xi .
N is the number of instances.

Objective

Find a subspace that maximizing the variance among the data.
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PRINCIPLE COMPONENT ANALYSIS(PCA)

Objective

To find a subspace that maximize the variance/covariance among the point cloud, we
need to find a projection matrix P ∈ Rr×d that maps the data XT ∈ RN×d into a
lower dimensional space (subspace), XT

proj ∈ RN×r ,

Xproj = PX ,

where r << d

P should fulfil a few conditions1:

P has orthonormal basis
The covariance of the Xproj is diagonal

1Shlens, Jonathon. ”A tutorial on principal component analysis.” arXiv preprint arXiv:1404.1100 (2014).
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EXAMPLE
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EXAMPLE

Source: https://setosa.io/ev/principal-component-analysis/
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SINGULAR VALUE DECOMPOSITION (SVD)

Singular Value Decomposition (SVD)2

Given a data matrix X ∈ RN×d , where N is the number of samples (observations) and
d is the feature dimension, the singular value decomposition (SVD) can be computed
as follows:

X = UΣV T , (1)

where U ∈ RN×N is the left-singular vectors, the diagonal elements of Σ ∈ RN×d are
the singular values, and V ∈ Rd×d is the right-singular vector. The eigenvectors are
the same as the right-singular vector, where the eigenvalues are the diagonal
elements of ΣTΣ.

2https://www.youtube.com/watch?v=HMOI_lkzW08
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EIGEN-DECOMPOSITION OF COVARIANCE MATRIX

Eigen-decomposition of Covariance Matrix
Given a covariance matrix C ∈ Rd×d , which can be computed from the data matrix as
C = XTX , the eigenvectors and eigenvalues can be computed as follows:

CV = ΛV , (2)

where V ∈ Rd×d is the eigenvectors matrix and the diagonal elements of Λ ∈ Rd×d

represent the eigenvalues.
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Connection between Covariance and SVD
Let’s start from Eq.(2), and substitute C with XTX as follows:

CV = ΛV ,
C = VΛV T ,
XTX = VΛV T ,
(UΣV T)TUΣV T = VΛV T ,
VΣTΣV T = VΛV T ,

(3)

where U TU = V TV = I , and ΣTΣ = Λ. It should be noted that data matrix X has column
zero mean (features) and the projected data can be obtained by XT

proj = V TXT .
Note: To get consistent results from SVD and Covariance, i.e. for SVD: divide XT by the

√
(N − 1), COV:

divide the XTX by the (N − 1).
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DEMO
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EXAMPLE
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VARIATIONS

Kernel PCA
Linear Discriminative Analysis
Independent Component Analysis
Laplacian Eigenmap
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WHAT IS CLUSTERING?

Definition (Clustering)

Given n unlabelled data points, separate them into K clusters.

Dilemma! [8]
What is a Cluster?
(Compact vs. Connected)
How many K clusters?
(Parametric vs. Non-parametric)
Soft vs. Hard clustering.
(Model vs. Cost based)
Data representation.
(Vector vs. Similarities)
Classification vs. Clustering.
Stability [10].
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APPLICATIONS

Image Retrieval
Image Compression
Image Segmentation
Pattern Recognition
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NOTATION

XT = {x1, x2, ..., xN} ∈ Rd×N is the data set.
d is the feature dimension of xi .
N is the number of instances.
K is the number of clusters.
∇ = {C1,C2, ....,CK}, where Ck is a partition of X .
c(xi) is the label/cluster of instance xi .
rnk where n is the index of instance and k is the index of cluster.

Objective

Find the clusters∇minimizing the cost function L(∇).
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PARAMETRIC, COST-BASED CLUSTERING

Parametric: K is defined.
Cost-based: It is hard-clustering based on the cost function.
Selected Algorithms:

K-Means [11].
K-Medoids [15].
Kernel K-Means [16].
Spectral Clustering [14].
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K-MEANS

K-Means algorithm:
Initialize: Pick K random samples from the dataset XT as the cluster
centroids µk = {µ1, µ2, ..., µK}.
Assign Points to the clusters: Partition data points XT into K clusters
∇ = {C1,C2, ...,CK} based on the Euclidean distance between the points
and centroids (searching for the closest centroid).
Centroid update: Based on the points assigned to each cluster, a new
centroid is computed µk .
Repeat: Do step 2 and 3 until convergence.
Convergence: if the cluster centroids barley change, or we have compact
and/or isolated clusters. Mathematically, when the cost (distortion) function
L(∇) =

∑K
k=1

∑
i∈Ck

‖xi − µk‖2 is minimum.
Practical issues:
a) The initialization. b) Pre-processing.
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K-MEANS -- ALGORITHM

input : Data points XT = {x1, x2, ..., xN}, number of clusters K
output: Clusters,∇ = {C1,C2, ....,CK}

Pick K random samples as the cluster centroids µk .
repeat

for i = 1 to N do
c(xi) = mink∈K‖xi − µk‖22 %Assign points to clusters

end
for k = 1 to K do

µk = 1
|Ck |

∑
i∈Ck

xi %Update the cluster centroid

end
until convergence;
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EXTENSIONS

Alternative cost (distortion) function:
N∑

i=1

N∑
j=1

‖xi − xj‖2 =
K∑

k=1

∑
i,j∈Ck

‖xi − xj‖2︸ ︷︷ ︸
Intracluster distance

+

K∑
k=1

∑
i∈Ck

∑
j /∈Ck

‖xi − xj‖2︸ ︷︷ ︸
Intercluster distance

Intracluster distance:

L(∇) =

K∑
k=1

∑
i,j∈Ck

‖xi − xj‖2 + constant

Interclsuter distance:

L(∇) = −
K∑

k=1

∑
i∈Ck

∑
l /∈Ck

‖xi − xj‖2 + constant
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CONT.

Alternative Initialization:
K-Means++ [2]
Global Kernel K-Means [17]

On selecting K 3:
Rule of thumb: K =

√
N/2

Elbow Method
Silhouette

Soft clustering: Fuzzy C-Means [3]
Variant: Spectral Clustering [18]
Hierarchical Clustering

3https://en.wikipedia.org/wiki/Determining_the_number_of_clusters_in_a_data_set
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COMPARISON

Algorithm Data Rep. Comp. Out. Cent.
K-Means Vectors Low No /∈ XT

K-Medians Vectors High No /∈ XT

K-Medoids Similarity High Yes ∈ XT

Kernel K-Means Kernel High N/A /∈ XT

Spectral Clustering Similarity High N/A /∈ XT

4

4Data Rep: Data Representation, Comp.: Computational cost, Out.: Handling outliers, Cent.: Centroids.
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PARAMETRIC, MODEL-BASED CLUSTERING

Parametric: K and the density function are defined (i.e. Gaussian)
Model-based: It is soft-clustering based on the mixture density f (x).

f (x) =
K∑

k=1

πkfk(x), s.t. πk ≥ 0,
∑
K

πk = 1,

where fk(x) is the component of mixture. f (x) is a Gaussian Mixture Model (GMM)
when fk(x) ∼ N (x;µk , σ

2
k).

Degree of Membership:

γki = P[xi ∈ Ck ] =
πkfk(xi)

f (xi)

GMM Parameter: θ = {π1:K , µ1:K , σ1:K}.
Selected Algorithm to estimate the parameter: EM-Algorithm [6].
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EXPECTATION-MAXIMIZATION (EM) ALGORITHM

Given data points XT sampled i.i.d
from an unknown distribution f
We need to model the distribution
using Maximum Likelihood (ML)
principle (log-likelihood):

l(θ) = ln fθ(X ) =
N∑

i=1

ln fθ(xi) ,
N∑

i=1

ln
K∑

k=1

πkfk(xi)

The objective: θML = arg maxθ l(θ)

Figure: GMM Clustering
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EM -- ALGORITHM

input : data points XT , number of clusters K
output: Parameters, θML = {π1:K , µ1:K , σ1:K}

Initialize the parameters θ at random.
repeat

for i = 1 to N do
for k = 1 to K do

γik = πkfk(xi)
f (xi)

%E-Step

end
end
for k = 1 to K do

πk = 1
N
∑N

i=1 γik %M-Step
µk = 1

Nπk

∑N
i=1 γikxi

σk = 1
Nπk

∑N
i=1 γik(xi − µk)(xi − µk)

T

end
until convergence;
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SUMMARY

©2022 Shadi Albarqouni 31



Structure Dimensionality Reduction Methods Clustering Parametric, cost-based clustering Parametric, model-based clustering

REFERENCES

Michal Aharon, Michael Elad, and Alfred Bruckstein.
K-svd: An algorithm for designing overcomplete dictionaries for sparse
representation.
Signal Processing, IEEE Transactions on, 54(11):4311–4322, 2006.

David Arthur and Sergei Vassilvitskii.
k-means++: The advantages of careful seeding.
In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 1027–1035. Society for Industrial and Applied Mathematics,
2007.

James C Bezdek.
Pattern recognition with fuzzy objective function algorithms.
Springer Science &amp; Business Media, 2013.

Christopher M Bishop.
Pattern recognition.
Machine Learning, 2006.

Yizong Cheng.
Mean shift, mode seeking, and clustering.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 17(8):790–799,
1995.

Arthur P Dempster, Nan M Laird, and Donald B Rubin.
Maximum likelihood from incomplete data via the em algorithm.
Journal of the royal statistical society. Series B (methodological), pages 1–38,
1977.

Anil K Jain.
Data clustering: 50 years beyond k-means.
Pattern recognition letters, 31(8):651–666, 2010.

Anil K Jain and Martin HC Law.
Data clustering: A user’s dilemma.
In Pattern Recognition and Machine Intelligence, pages 1–10. Springer, 2005.

Ian Jolliffe.
Principal component analysis.
Wiley Online Library, 2002.

Tilman Lange, Volker Roth, Mikio L Braun, and Joachim M Buhmann.
Stability-based validation of clustering solutions.
Neural computation, 16(6):1299–1323, 2004.

S. Lloyd.
Least squares quantization in pcm.
Information Theory, IEEE Transactions on, 28(2):129–137, Mar 1982.

Marina Meil.
Classic and modern data clustering.

Marina Meila.
Classic and modern data clustering.
Machine Learning Summer School (MLSS), 2011.

Andrew Y Ng, Michael I Jordan, Yair Weiss, et al.
On spectral clustering: Analysis and an algorithm.
Advances in neural information processing systems, 2:849–856, 2002.

Hae-Sang Park and Chi-Hyuck Jun.
A simple and fast algorithm for k-medoids clustering.
Expert Systems with Applications, 36(2):3336–3341, 2009.

Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller.
Nonlinear component analysis as a kernel eigenvalue problem.
Neural computation, 10(5):1299–1319, 1998.

Grigorios F Tzortzis and Aristidis C Likas.
The global kernel-means algorithm for clustering in feature space.
Neural Networks, IEEE Transactions on, 20(7):1181–1194, 2009.

Ulrike Von Luxburg.
A tutorial on spectral clustering.
Statistics and computing, 17(4):395–416, 2007.

©2022 Shadi Albarqouni 32


	Structure
	Dimensionality Reduction Methods
	Principle Component Analysis (PCA)
	Variations

	Clustering
	Parametric, cost-based clustering
	K-Means
	Extensions
	Comparison

	Parametric, model-based clustering
	Mixture Models


	anm0: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


