

MACHINE LEARNING

Dimensionality Reduction + Clustering

Last Update: 22nd December 2022

Director of Computational Imaging Research Lab. (Albarqouni Lab.) University Hopsital Bonn | University of Bonn | Helmholtz Munich

STRUCTURE

- 1. Dimensionality Reduction Methods
- 1.1 Principle Component Analysis (PCA)
- 1.2 Variations
- 2. Clustering
- 3. Parametric, cost-based clustering
- 3.1 K-Means
- 3.2 Extensions
- 3.3 Comparison
- 4. Parametric, model-based clustering
- 4.1 Mixture Models

DIMENSIONALITY REDUCTION METHODS

Structure Dimensionality Reduction Methods

Clustering

Parametric, cost-based clustering 0000000

Parametric, model-based clustering 000000

WHY WE NEED SUBSPACE METHODS?

Image adopted from Sakaue, Saori, et al. "Dimensionality reduction reveals fine-scale structure in the Japanese population with consequences for polygenic risk prediction." Nature communications 11.1 (2020): 1-11.

Clustering

Parametric, cost-based clustering

Parametric, model-based clustering 000000

WHY WE NEED SUBSPACE METHODS?

Image adopted from Sakaue, Saori, et al. "Dimensionality reduction reveals fine-scale structure in the Japanese population with consequences for polygenic risk prediction." Nature communications 11.1 (2020): 1-11.

Dimensionality Reduction Methods		

$$\mathcal{X}^T = \{x_1, x_2, ..., x_N\}^T \in \mathbb{R}^{d \times N}$$
 is the data set d is the feature dimension of x_i .
 N is the number of instances.

Objective

Find a subspace that maximizing the variance among the data.

Parametric, cost-based clust

Parametric, model-based clustering 000000

PRINCIPLE COMPONENT ANALYSIS(PCA)

Objective

To find a subspace that maximize the variance/covariance among the point cloud, we need to find a projection matrix $P \in \mathbb{R}^{r \times d}$ that maps the data $\mathcal{X}^T \in \mathbb{R}^{N \times d}$ into a lower dimensional space (subspace), $\mathcal{X}_{proj}^T \in \mathbb{R}^{N \times r}$,

$$\mathcal{X}_{proj} = P\mathcal{X},$$

where $r \ll d$

P should fulfil a few conditions¹:

P has orthonormal basis

The covariance of the \mathcal{X}_{proj} is diagonal

¹Shlens, Jonathon. "A tutorial on principal component analysis." arXiv preprint arXiv:1404.1100 (2014).

	Structure O	Dimensionality Reduction Methods	Clustering 0000	Parametric, cost-based clustering 0000000	Parametric, model-based clustering 000000
_	-				

EXAMPLE

	Dimensionality Reduction Methods		

EXAMPLE

Source: https://setosa.io/ev/principal-component-analysis/

Parametric, cost-based clustering

SINGULAR VALUE DECOMPOSITION (SVD)

Singular Value Decomposition (SVD)²

Given a data matrix $X \in \mathbb{R}^{N \times d}$, where N is the number of samples (observations) and d is the feature dimension, the singular value decomposition (SVD) can be computed as follows:

$$X = U\Sigma V^T, (1)$$

where $U \in \mathbb{R}^{N \times N}$ is the left-singular vectors, the diagonal elements of $\Sigma \in \mathbb{R}^{N \times d}$ are the singular values, and $V \in \mathbb{R}^{d \times d}$ is the right-singular vector. The eigenvectors are the same as the right-singular vector, where the eigenvalues are the diagonal elements of $\Sigma^T \Sigma$.

²https://www.youtube.com/watch?v=HMOI_lkzW08

EIGEN-DECOMPOSITION OF COVARIANCE MATRIX

Eigen-decomposition of Covariance Matrix

Given a covariance matrix $C \in \mathbb{R}^{d \times d}$, which can be computed from the data matrix as $C = X^T X$, the eigenvectors and eigenvalues can be computed as follows:

$$CV = \Lambda V, \tag{2}$$

where $V \in \mathbb{R}^{d \times d}$ is the eigenvectors matrix and the diagonal elements of $\Lambda \in \mathbb{R}^{d \times d}$ represent the eigenvalues.

Machine Learning

- Dimensionality Reduction Methods
 - Principle Component Analysis (PCA)
 - Eigen-decomposition of Covariance Matrix

Eigen-decomposition of Covariance Matrix

Given a covariance matrix $C \in \mathbb{R}^{d \times d}$, which can be computed from the data matrix as $C = X^T X$, the eigenvectors and eigenvalues can be computed as follows $CV = \Lambda V$.

(2)

where $V \in \mathbb{R}^{d \times d}$ is the eigenvectors matrix and the diagonal elements of $\Lambda \in \mathbb{R}^{d \times d}$ represent the eigenvalues.

Let's start from Eq.(2), and substitute C with $X^T X$ as follows:

CV	ΛV ,	
C	$V\Lambda V^T$,	
$X^T X$	$V\Lambda V^T$,	(3)
$(U\Sigma V^T)^T U\Sigma V^T$	$V\Lambda V^T$,	
$V\Sigma^T\Sigma V^T$	$V\Lambda V^T$,	

where $U^T U = V^T V = I$, and $\Sigma^T \Sigma = \Lambda$. It should be noted that data matrix X has column zero mean (features) and the projected data can be obtained by $X_{nrai}^T = V^T X^T$. Note: To get consistent results from SVD and Covariance, i.e. for SVD: divide X^T by the $\sqrt{(N-1)}$, COV: divide the $X^T X$ by the (N-1).

	Dimensionality Reduction Methods		
DEMO			

Dimensionality Reduction Methods

Parametric, cost-based 0000000 Parametric, model-based clustering 000000

EXAMPLE

Dimensionality Reduction Methods		Parametric, model-based clustering
0000000000		

VARIATIONS

Kernel PCA Linear Discriminative Analysis Independent Component Analysis Laplacian Eigenmap

CLUSTERING

WHAT IS CLUSTERING?

Definition (Clustering)

Given n unlabelled data points, separate them into K clusters.

Dilemma! [8]

What is a Cluster?

(Compact vs. Connected)

How many *K* clusters? (Parametric vs. Non-parametric)

Soft vs. Hard clustering. (Model vs. Cost based)

Data representation. (Vector vs. Similarities)

Classification vs. Clustering.

Stability [10].

 Structure
 Dimensionality Reduction Methods
 Clustering
 Parametric, cost-based clustering
 Parametric, model-based clustering

 o
 0000000000
 0000
 0000000
 000000

APPLICATIONS

IM GENET ١. Original image K = 1040 0 6 4691348

Image Retrieval Image Compression Image Segmentation Pattern Recognition

		Clustering 000●	
ΝΙΟΤΔΤΙΟ	N		

$$\mathcal{X}^T = \{x_1, x_2, ..., x_N\} \in \mathbb{R}^{d imes N}$$
 is the data set.

d is the feature dimension of x_i .

N is the number of instances.

K is the number of clusters.

 $\nabla = \{C_1, C_2, ..., C_K\}$, where C_k is a partition of \mathcal{X} .

 $c(x_i)$ is the label/cluster of instance x_i .

 r_{nk} where *n* is the index of instance and *k* is the index of cluster.

Objective

Find the clusters ∇ minimizing the cost function $\mathcal{L}(\nabla)$.

PARAMETRIC, COST-BASED CLUSTERING

Parametric, cost-based clustering o●oooooo Parametric, model-based clustering 000000

PARAMETRIC, COST-BASED CLUSTERING

Parametric: K is defined. Cost-based: It is hard-clustering based on the cost function. Selected Algorithms:

K-Means [11]. K-Medoids [15]. Kernel K-Means [16]. Spectral Clustering [14].

	Parametric, cost-based clustering	

K-MEANS

K-Means algorithm:

Initialize: Pick *K* random samples from the dataset \mathcal{X}^T as the cluster centroids $\mu_k = {\mu_1, \mu_2, ..., \mu_K}$.

Assign Points to the clusters: Partition data points \mathcal{X}^T into K clusters $\nabla = \{C_1, C_2, ..., C_K\}$ based on the Euclidean distance between the points

and centroids (searching for the closest centroid).

Centroid update: Based on the points assigned to each cluster, a new centroid is computed $\mu_k.$

Repeat: Do step 2 and 3 until convergence.

Convergence: if the cluster centroids barley change, or we have compact and/or isolated clusters. Mathematically, when the cost (distortion) function $\mathcal{L}(\nabla) = \sum_{k=1}^{K} \sum_{i \in C_k} ||x_i - \mu_k||^2$ is minimum.

Practical issues:

a) The initialization. b) Pre-processing.

K-MEANS -- ALGORITHM

input : Data points $\mathcal{X}^T = \{x_1, x_2, ..., x_N\}$, number of clusters K output: Clusters, $\nabla = \{C_1, C_2, ..., C_K\}$

Pick K random samples as the cluster centroids μ_k . repeat

for
$$i = 1$$
 to N do
 $| c(x_i) = \min_{k \in K} ||x_i - \mu_k||_2^2$ %Assign points to clusters
end
for $k = 1$ to K do
 $| \mu_k = \frac{1}{|C_k|} \sum_{i \in C_k} x_i$ %Update the cluster centroid
end

until convergence;

		Parametric, cost-based clustering	
EXTENS	IONS		

Alternative cost (distortion) function:

$$\sum_{i=1}^{N} \sum_{j=1}^{N} \|x_i - x_j\|^2 = \underbrace{\sum_{k=1}^{K} \sum_{i,j \in C_k} \|x_i - x_j\|^2}_{\text{Intracluster distance}} + \underbrace{\sum_{k=1}^{K} \sum_{i \in C_k} \sum_{j \notin C_k} \|x_i - x_j\|^2}_{\text{Intercluster distance}}$$

Intracluster distance:

$$\mathcal{L}(\nabla) = \sum_{k=1}^{K} \sum_{i,j \in C_k} \|x_i - x_j\|^2 + constant$$

Interclsuter distance:

$$\mathcal{L}(\nabla) = -\sum_{k=1}^{K} \sum_{i \in C_k} \sum_{l \notin C_k} ||x_i - x_j||^2 + constant$$

		Parametric, cost-based clustering ○○○○○○●○	
CONT.			

Alternative Initialization: K-Means++ [2] Global Kernel K-Means [17] On selecting K^3 : Rule of thumb: $K = \sqrt{N/2}$ Flbow Method Silhouette Soft clustering: Fuzzy C-Means [3] Variant: Spectral Clustering [18] Hierarchical Clustering

 $[\]label{eq:linear} {}^{3} https://en.wikipedia.org/wiki/Determining_the_number_of_clusters_in_a_data_set$

		Parametric, cost-based clustering ○○○○○○○●	

COMPARISON

Algorithm	Data Rep.	Comp.	Out.	Cent.
K-Means	Vectors	Low	No	$\notin \mathcal{X}^T$
K-Medians	Vectors	High	No	$\notin \mathcal{X}^T$
K-Medoids	Similarity	High	Yes	$\in \mathcal{X}^T$
Kernel K-Means	Kernel	High	N/A	$\notin \mathcal{X}^T$
Spectral Clustering	Similarity	High	N/A	$\notin \mathcal{X}^T$
4				

⁴Data Rep: Data Representation, Comp.: Computational cost, Out.: Handling outliers, Cent.: Centroids.

PARAMETRIC, MODEL-BASED CLUSTERING

PARAMETRIC, MODEL-BASED CLUSTERING

Parametric: K and the density function are defined (i.e. Gaussian) Model-based: It is soft-clustering based on the mixture density f(x).

$$f(x) = \sum_{k=1}^{K} \pi_k f_k(x), \quad s.t. \quad \pi_k \ge 0, \sum_{K} \pi_k = 1,$$

where $f_k(x)$ is the component of mixture. f(x) is a Gaussian Mixture Model (GMM) when $f_k(x) \sim \mathcal{N}(x; \mu_k, \sigma_k^2)$. Degree of Membership:

$$\gamma_{ki} = P[x_i \in C_k] = \frac{\pi_k f_k(x_i)}{f(x_i)}$$

GMM Parameter: $\theta = \{\pi_{1:K}, \mu_{1:K}, \sigma_{1:K}\}.$ Selected Algorithm to estimate the parameter: EM-Algorithm [6]. Dimensionality Reduction Methods Cluste

Parametric, cost-based clustering

Parametric, model-based clustering

EXPECTATION-MAXIMIZATION (EM) ALGORITHM

Given data points \mathcal{X}^T sampled i.i.d from an unknown distribution fWe need to model the distribution using Maximum Likelihood (ML) principle (log-likelihood):

$$l(\theta) = \ln f_{\theta}(\mathcal{X}) = \sum_{i=1}^{N} \ln f_{\theta}(x_i) \triangleq \sum_{i=1}^{N} \ln \sum_{k=1}^{K} \pi_k f_k(x_i)$$

The objective:
$$\theta^{ML} = \arg \max_{\theta} l(\theta)$$

©2022 Shadi Albarqouni

		Parametric, model-based clustering

EM -- ALGORITHM

input : data points \mathcal{X}^{T} , number of clusters K output: Parameters, $\theta^{ML} = \{\pi_{1:K}, \mu_{1:K}, \sigma_{1:K}\}$

Initialize the parameters $\boldsymbol{\theta}$ at random. repeat

for $i=1$ to N do				
for $k = 1$ to K do				
$\gamma_{ik} = \frac{\pi_k f_k(x_i)}{f(x_i)}$	%E-Step			
end				
end				
for $k=1$ to K do				
$\pi_k = \frac{1}{N} \sum_{i=1}^{N} \gamma_{ik}$	%M-Step			
$\mu_k = \frac{1}{N\pi_k} \sum_{i=1}^N \gamma_{ik} x_i$				
$\sigma_k = \frac{1}{N\pi_k} \sum_{i=1}^N \gamma_{ik} (x_i - \mu_k) (x_i - \mu_k)^T$				
end				
til convergence:				

©2022 Shadi Albarqouni

			Parametric, model-based clustering ○○○○●○
SUMMAR	Y		

 Structure
 Dimensionality Reduction Methods
 Clustering
 Parametric, cost-based clustering
 Parametric, model-based clustering

 o
 00000000000
 0000
 00000000
 000000

REFERENCES

- Michal Aharon, Michael Elad, and Alfred Bruckstein.
 K-svd: An algorithm for designing overcomplete dictionaries for sparse representation.
 Signal Processing, IEEE Transactions on, 54(11):4311–4322, 2006.
- David Arthur and Sergei Vassilvitskii.
 - k-means++: The advantages of careful seeding.

In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages 1027–1035. Society for Industrial and Applied Mathematics, 2007.

James C Bezdek.

Pattern recognition with fuzzy objective function algorithms. Springer Science & amp; Business Media, 2013.

©2022 Shadi Albargouni Pattern recognition