

MACHINE LEARNING Course Recap.

Last Update: 21st December 2022

Prof. Dr. Shadi Albarqouni

Director of Computational Imaging Research Lab. (Albarqouni Lab.) University Hopsital Bonn | University of Bonn | Helmholtz Munich
 Structure
 Overview.
 ML Experience
 Feature Extraction
 Dimensionality Reduction
 Training
 Validation
 Evaluation Metrics
 Deep Learning
 What's next?

 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 <td

STRUCTURE

- 1. Overview.
- 2. ML Experience
- 3. Feature Extraction
- 4. Dimensionality Reduction
- 5. Training
- 6. Validation
- 7. Evaluation Metrics
- 8. Deep Learning
- 9. What's next?

OVERVIEW.

WHAT IS MACHINE LEARNING (ML)?

Definition (Tom Mitchell)

A computer program is said to learn from experience E with respect to some class of tasks T, and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

TASKS - CLASSIFICATION

T₁: Classification

$$y_q \in \{c_1, c_2, ..., c_K\}$$

Tuberculosis Atelectasis

 $I_q \in \mathbb{R}^{m \times n}$

 Structure
 Overview.
 ML Experience
 Feature Extraction
 Dimensionality Reduction
 Training
 Validation
 Evaluation Metrics
 Deep Learning
 What's next?

 0
 0000000
 0000
 0000000
 00000000
 00000000
 00000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

TASKS - ANOMALY DETECTION

T₂: Anomaly Detection $y_q \in \{c_N, c_A\}$ Normal Abnormal
 Structure
 Overview.
 ML Experience
 Feature Extraction
 Dimensionality Reduction
 Training
 Validation
 Evaluation Metrics
 Deep Learning
 What's next?

 0
 0000000
 0000
 0000000
 00000000
 000
 00000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

TASKS - REGRESSION

 Structure
 Overview.
 ML Experience
 Feature Extraction
 Dimensionality Reduction
 Training
 Validation
 Evaluation Metrics
 Deep Learning
 What's next?

 0
 0000000
 0000
 0000000
 00000000
 000
 00000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

TASKS - RETRIEVAL

 Structure
 Overview.
 ML Experience
 Feature Extraction
 Dimensionality Reduction
 Training
 Validation
 Evaluation Metrics
 Deep Learning
 What's next?

TASKS - SEGMENTATION

 $I_q \in \mathbb{R}^{m \times n}$

T₅: Segmentation

 $y_q \in \mathbb{R}^{m \times n \times K}$

ML EXPERIENCE

EXPERIENCE

Source: https://www.mathworks.com/discovery/reinforcement-learning.html

EXPERIENCE

EXPERIENCE Feature Extraction **Evaluation Metrics Pre-Processing** Dimensionality Reduction Validation Training Testing LOSS

Structure Overview. ML Experience

FEATURE EXTRACTION

PRE-PROCESSING -- MOTIVATION

PRE-PROCESSING -- FEATURE SCALING

Normalization: It is the process of rescaling the values of all features to a range between 0 and 1.

$$z_i = \frac{x_i - \min(x)}{\max(x) - \min(x)}$$

Image Source: https://mkang32.github.io/python/2020/12/27/feature-scaling.html

PRE-PROCESSING -- FEATURE SCALING

Standardization: It is the process of representing the data as a Normal distribution with a 0 mean and a unit (1) standard deviation.

$$z_i = \frac{x_i - \mu_x}{\sigma_x}$$

Image Source:

https://mkang32.github.io/python/2020/12/27/feature-scaling.html

FEATURE EXTRACTION

FEATURE EXTRACTION

Local Pixel Features (Binary, Spectra, e.g., SIFT, SURF, HoG, ...etc.)

Global Pixel Features (Texture, SDM, ...etc.)

Shape of Pixel Regions (Area, Perimeter, Centroids ...etc.)

Basis sets (Haarlike, Bag of words, ...etc.)

Adopted from Fig.5.1 in Krig, S., 2014. Computer vision metrics: Survey, taxonomy, and analysis (p. 508). Springer nature.

FEATURE EXTRACTION

Adopted from Fig.1 in El-Gayar, M. M., and H. Soliman. "A comparative study of image low level feature extraction algorithms." Egyptian Informatics Journal ©2022 Shadi Albargouni 14.2 (2013): 175-181.

DIMENSIONALITY REDUCTION

 Structure
 Overview.
 ML Experience
 Feature Extraction
 Dimensionality Reduction
 Training
 Validation
 Evaluation Metrics
 Deep Learning
 What's next?

 0
 0000000
 0000
 0000000
 00000000
 000
 00000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

DIMENSIONALITY REDUCTION

DIMENSIONALITY REDUCTION

Principal Compnent Analysis (PCA)

is a statistical technique for reducing the dimensionality of a dataset

linearly transform the data into a new coordinate system where (most of) the variation in the data can be described with fewer dimensions than the initial data

The new coordinate system components are called Principal Components (PCs)

StructureOverview.ML ExperienceFeature ExtractionDimensionality ReductionTrainingValidationEvaluation MetricsDeep LearningWhat's next?oo<

DIMENSIONALITY REDUCTION

Principal Component Analysis (PCA)

is a statistical technique for reducing the dimensionality of a dataset

linearly transform the data into a new coordinate system where (most of) the variation in the data can be described with fewer dimensions than the initial data

The new coordinate system components are called Principal Components (PCs)

DIMENSIONALITY REDUCTION

Source: https://setosa.io/ev/principal-component-analysis/

DIMENSIONALITY REDUCTION

· Supervised Learning

- · Derive general rules from labeled examples
- Unsupervised Learning
- Discover similarities within unlabelled data. Estimate their distribution
- Semi-Supervised Learning
- · Make use of both labeled and unlabelled data
- Reinforcement Learning
- Make right decisions from the past experience

labeled examples:

$$\mathcal{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ..., (\mathbf{x}_N, y_N)\}$$

Input feature:

$$\mathbf{x} = (x_1, x_2, ..., x_d) \in \mathbb{R}^d$$

Predicted output:

$$\underbrace{y \in \{c_1, c_2, ..., c_K\}}_{classification} \text{ or } \underbrace{y \in \mathbb{R}^k}_{regression} \text{ for } \underbrace{y \in \mathbb{R}^k}_{regression}$$

뇌

- Supervised Learning
- Derive general rules from labeled examples
- Unsupervised Learning
- Discover similarities within unlabelled data. Estimate their distribution
- Semi-Supervised Learning
 - · Make use of both labeled and unlabelled data
- Reinforcement Learning
- · Make right decisions from the past experience

Unlabelled examples:

$$\mathcal{D} = \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N\}$$

Input feature:

$$\mathbf{x} = (x_1, x_2, \dots, x_d) \in \mathbb{R}^d$$

Output (clusters):

 Structure
 Overview.
 ML Experience
 Feature Extraction
 Dimensionality Reduction
 Training
 Validation
 Evaluation Metrics
 Deep Learning
 What's next?

 0
 0000000
 0000
 0000000
 0000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 <td

- Supervised Learning
- Derive general rules from labeled examples
- Unsupervised Learning
- Discover similarities within unlabelled data. Estimate their distribution

Semi-Supervised Learning

- · Make use of both labeled and unlabelled data
- · Reinforcement Learning
 - · Make right decisions from the past experience

Labeled & Unlabelled examples:

$$\mathcal{D} = \{ (\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ..., (\mathbf{x}_L, y_L), \\ x_{L+1}, x_{L+2}, ..., x_{L+U} \}$$

Input feature:

$$\mathbf{x} = (x_1, x_2, \dots, x_d) \in \mathbb{R}^d$$

Predicted Output:

- Supervised Learning
- Derive general rules from labeled examples
- Unsupervised Learning
 - Discover similarities within unlabelled data. Estimate their distribution
- Semi-Supervised Learning
 - Make use of both labeled and unlabelled data
- · Reinforcement Learning
- · Make right decisions from the past experience

 Structure
 Overview.
 ML Experience
 Feature Extraction
 Dimensionality Reduction
 Training
 Validation
 Evaluation Metrics
 Deep Learning
 What's next?

 0
 0000000
 0000
 0000000
 0000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 00

VALIDATION

Evaluation Metrics <u>Validation</u> Testing

Validation

000000000 000

VALIDATION

VALIDATION

Non-Exhaustive Cross Validation

Holdout method k-fold Cross Validation (k-fold CV)

Exhaustive Cross Validation

Leave-one-out Cross Validation (LOOCV) Leave-p-out Cross Validation (LpOCV)

	1000000				
				Validation	Holdout
Training Data			Validation		Holdout
Training Data		Validation			Holdout
Training Data	Validation				Holdout
Validation	Training Data				Holdout
V11111	V11111A	111112	2 <u>1</u>	((())	ATTTTT
6 10%	20% 30%	40%	50% 60%	70%	80% 90% 100

EVALUATION METRICS

Structure
oOverview.ML Experience
oFeature ExtractionDimensionality ReductionTraining
oValidationEvaluation Metrics
oDeep Learning
oWhat's next?o000000000000000000000000000000000000

EVALUATION METRICS

EVALUATION METRICS

EVALUATION METRICS -- SINGLE THRESHOLD

EVALUATION METRICS -- SINGLE THRESHOLD

Structure
oOverview.ML Experience
ococococoFeature Extraction
ococococoDimensionality Reduction
ococococoTraining
ocococococoValidation
ocococococoEvaluation Metrics
ocococococoDeep Learning
ococococococoWhat's next?000</

EVALUATION METRICS -- MULTI-THRESHOLDS

EVALUATION METRICS -- SEGMENTATION

EVALUATION METRICS -- OTHER METRICS

- Classification
 - Accuracy (ACC)
 - Error Rate (top 1%, top 5%)
 - Precision
 - Recall
 - F-Score
 - Area Under ROC Curve
 - Area Under PR Curve

• Segmentation

- Dice Coefficient (DICE)
- Jaccard index

- Regression
 - Mean Absolute Error (MAE)
 - Mean Square Error (MSE)
 - Normalized Cross Correlation (NCC)
- Synthesis/Denoising
 - Mean Square Error (MSE)
 - Peake Signal to Noise Ratio (PSNR)
- Structural Similarity Image Measure (SSIM)
- Contrast to Noise Ratio (CNR)

- Clustering
 - Davies-Bouldin index
 - Purity
 - Normalized Mutual Information (NMI)

DEEP LEARNING

DEEP LEARNING

Deep Learning

WHAT'S NEXT?

NEXT COURSE?

Machine Learning II

Neural Networks for Sequences (Ch15)

Kernel Methods – Support Vector Machine (Ch 17)

Trees, Forests, Bagging, and Boosting – Boosting (Ch 18)

Beyond Supervised Learning – Learning with Fewer Labeled Examples (Ch 19)

Beyond Supervised Learning – Recommender Systems

Beyond Supervised Learning – Graph Embeddings

Kevin P. Murphy

Questions