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Warm-up Example: Fish bowls

posterior | liklihood | prior

Given two bowls, where

• in bowl-1 there are 30 red fishes and 10
blue fishes while

• in bowl-2 there 20 red fishes and 20
blue fishes,

and you catched a red fish without
looking, what is the probability that the
fish came from bowl-1?

Inspired by the example in this blog https://medium.com/@canerkilinc/bayess-theorem-a0f6e3537278
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WHAT IS PROBABILITY?

Probability theory is nothing but common
sense reduced to calculation. – (Pierre
Laplace, 1749-1827)

Frequentist interpretation:
probabilities represent long run
frequencies of events.
Bayesian interpretation: probability is
used to quantify our uncertainty or
ignorance about something; that can
happen multiple times.
Real-life applications include but not
limited to; Weather Forecasting,
Politics, Insurance among others.
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PROBABILITY AS AN EXTENSION OF LOGIC

The expression Pr(A) denotes the probability with
which you believe event A is true. We require that
0 < Pr(A) < 1, where Pr(A) = 0means the event
definitely will not happen, and Pr(A) = 1means
the event definitely will happen.

Joint probability: Pr(A ∧ B) = Pr(A,B)

Union probability:
Pr(A ∨ B) = Pr(A) + Pr(B)− Pr(A ∧ B)

Conditional probability: Pr(B|A) , Pr(A,B)
Pr(A)

Indpendence of events:
Pr(A,B) = Pr(A)Pr(B) iff A ⊥ B
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LIMITATIONS OF SUMMARY STATISTICS

Anscombe’s quartet (Code)

Compute the expected value E[·] and varianceV[·] of the random variables x and y
Compute the correlation coefficient ρ
Report your observation
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https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/anscombes_quartet.ipynb
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Datasaurus Dozen (Code)
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https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/datasaurus_dozen.ipynb
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VISUALIZATION VS. STATISTICS

Box plot vs. violin plot in Python (Code)

limitations of visualization?
features beyond statistics!

Source:https://www.autodesk.com/research/publications/same-stats-different-graphs
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BAYES' THEOREM

Bayes’s theorem is to the theory of probability what Pythagoras’s theorem is to
geometry. — Sir Harold Jeffreys, 1973

Bayes' Theorem

p(H = h|Y = y) = p(H = h)p(Y = y|H = h)
p(Y = y)

The term p(H ) represents what we know about possible values of hypotheses H
before we see any data/observations; this is called the prior distribution.
The term p(Y = y|H = h) represent the probability at a point corresponding to
the actual observations, y which is called the likelihood.
The term p(Y = y) is known as the marginal likelihood and computed as∑

h′∈H p(H = h′)p(Y = y|H = h′)
The term p(H = h|Y = y) represent the posterior distribution
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Example: Fish bowls -- two more examples in Sec. 2.3.1

posterior | liklihood | prior

Given two bowls, where

• in bowl-1 there are 30 red fishes and 10
blue fishes while

• in bowl-2 there 20 red fishes and 20
blue fishes,

and you catched a red fish without
looking, what is the probability that the
fish came from bowl-1?

Inspired by the example in this blog https://medium.com/@canerkilinc/bayess-theorem-a0f6e3537278
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Source:https://www.investopedia.com/terms/p/probabilitydistribution.asp©2022 Shadi Albarqouni 13
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DIFFERENT TYPES OF DISTRIBUTIONS

Source: Fig. 6A.15 from https://pages.stern.nyu.edu/ adamodar/pdfiles/papers/probabilistic.pdf
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BERNOULLI AND BINOMIAL DISTRIBUTIONS

Bernoulli distribution (pmf)

Ber(y|θ) =

{
1− θ ify = 0

θ ify = 1

It can be written as Ber(y|θ) , θy(1− θ)1−y where
θ is the probability of event y = 1.

E[y] =
∑1

y=0 yBer(y|θ) = θ

V[y] =
∑1

y=0(y − E[y])2Ber(y|θ) = θ(1− θ)

Source:
https://en.wikipedia.org/wiki/Bernoulli_distribution

©2022 Shadi Albarqouni 15

https://en.wikipedia.org/wiki/Bernoulli_distribution
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Bionomial distribution (pmf)

Bin(s|N , θ) =

(
N
s

)
θs(1− θ)N−s

where
(N

k
)
= N !

(N−k)!k! ,

θ is the probability of event y = 1,
N is the number of trials, and
s ,

∑N
n=1 I(yn = 1) is the total number of an

event y = 1.
Compute E[y] and V[y]

Special case:
Bin(s|N , θ) = Ber(y|θ) , θy(1− θ)1−y when N = 1.

Play with the Code – take Castania as an example

©2022 Shadi Albarqouni 16

https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/binom_dist_plot.ipynb
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Example: classifying Iris flowers (Code)

Sigmoid (logistic) function | heaviside step function | Self-reading Sec. 2.5

Given some inputs x ∈ X and a mapping
function f (·) that predict a binary variable
y ∈ {0, 1}, write the conditional
probability distribution p(y|x, θ):

p(y|x, θ) = Ber(y|f (x; θ))

To avoid the requirement that
0 < f (x; θ) < 1, we use the following
model p(y|x, θ) = Ber(y|σ(f (x; θ))),
where σ(a) = 1

1+exp−a is the sigmoid
function with a = f (x; θ).

©2022 Shadi Albarqouni 17

https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/iris_logreg.ipynb
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UNIVARIATE GAUSSIAN (NORMAL) DISTRIBUTION

The most widely used distribution of real-valued
random variables y ∈ R is the Gaussian distribution,
also called the normal distribution.

Gaussian distribution (pdf)

p(y) = N (y|µ, σ2) ,
1√
2πσ2

e−
(y−µ)2

2σ2

where
√
2πσ2 is the normalization constant.

E[y] =
∫
Y yp(y) = µ

V[y] =
∫
Y(y − E[y])2p(y) = σ2

Special case: N (y|0, 1) is the standard normal
distribution

Source: https:
//www.simplypsychology.org/normal-distribution.html
Why is it so widely used?

two parameters easy to interpret

central limit theorem; sum of i.i.d random variables –>
gaussian distribution

makes the least number of assumptions (max.
entropy) –> good default choice

simple mathematical form to implement
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Example: regression (Code)

linear regression | homoscedastic regression | heteroscedastic regression | Softplus

Given some inputs x ∈ X and a mapping function
f (·) that predict the response y ∈ Y , write the
conditional probability distribution p(y|x, θ) as a
conditional guassian distribution.

p(y|x, θ) = N (y|fµ(x; θ), fσ(x; θ)2)

where fµ(x; θ) ∈ R predicts the mean, and
fσ(x; θ) ∈ R+ predicts the variance.

homoscedastic regression: The variance is
independent of the input;N (y|wTx + b, σ2)

heteroscedastic regression The variance is a
function of the input;N (y|wT

µ x + b, σ+(wT
σ x))

©2022 Shadi Albarqouni 19

https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/02/linreg_1d_hetero_tfp.ipynb
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FUN FACTS

”The fundamental nature of the Gaussian distribution and its main properties were
noted by Laplace when Gauss was six years old; and the distribution itself had been
found by de Moivre before Laplace was born” – Jaynes

Abraham de Moivre (1667 - 1754)
Pierre Simon Laplace (1749 - 1827)

Carl Friedrich Gauss (1777 - 1855)
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DIRAC DELTA FUNCTION

As the variance σ2 in the Gaussian distribution goes
to zero, the distribution approaches an infinitely
narrow, but infinitely tall, “spike” at the mean
p(y) , limσ→0N (y|µ, σ2) → δ(y − µ)

Dirac delta function

δ(x) =

{
+∞ ifx = 0

0 otherwise
,

where
∫ −∞
∞ δ(x)dx = 1

Sifting property:
∫ −∞
∞ f (y)δ(x − t)dy = f (x)

Source:

https://https://commons.wikimedia.org/
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CENTRAL LIMIT THEOREM (CODE)

Definition
The distribution of the sum of N independent
and identically distributed (i.i.d) random variables
Xn ∼ p(X), e.g., SND =

∑ND
n=1 Xn , converges to a

standard normal distribution where X̄ = SN/N is
the sample mean.

Source: developed by William Arloff
https://you.stonybrook.edu/banderson/statistics/

©2022 Shadi Albarqouni 22

HTTPS://COLAB.RESEARCH.GOOGLE.COM/GITHUB/PROBML/PYPROBML/BLOB/MASTER/NOTEBOOKS/BOOK1/02/CENTRALLIMITDEMO.IPYNB
https://you.stonybrook.edu/banderson/statistics/
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MONTE CARLO APPROXIMATION (CODE)

Definition
It is a common approach to recover the underlying distribution p(y) where y = f (x)
by drawing many samples from a random number generator p(x)

Source:https://en.wikipedia.org/wiki/Monte_
Carlo_method

©2022 Shadi Albarqouni 23

HTTPS://COLAB.RESEARCH.GOOGLE.COM/GITHUB/PROBML/PYPROBML/BLOB/MASTER/NOTEBOOKS/BOOK1/02/CHANGE_OF_VARS_DEMO1D.IPYNB
https://en.wikipedia.org/wiki/Monte_Carlo_method
https://en.wikipedia.org/wiki/Monte_Carlo_method


MULTIVARIATE MODELS



Structure Intro. to Probability Univariate Models Multivariate Models

UNIVARIATE VS. MULTIVARIATE RANDOM VARIABLES

©2022 Shadi Albarqouni 25
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MULTIVARIATE GAUSSIAN (NORMAL) DISTRIBUTION

The most widely used joint probability distribution for continuous random variables is
the multivariate Gaussian or multivariate normal (MVN).

Multivariate Gaussian distribution (pdf)

N (y|µ,Σ) = 1

(2π)D/2|Σ|1/2
exp

(
−1

2
(y − µ)TΣ−1(y − µ)

)

where

E[y] = µ is the mean vector,
Cov[y] , E

(
y − E[y])(y − E[y])T]

is the covaraince matrix, and
Z = (2π)D/2|Σ|1/2 is the normalization constant
E[yyT ] = Σ + µµT
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Example: bivariate Gaussian distribution (Code)

N (y|µ,Σ) = 1

2π|Σ|1/2
exp

(
−1

2
(y − µ)TΣ−1(y − µ)

)
where

µ = (µ1, µ2)
T ,

Σ =

(
σ2
1 σ2

12

σ2
12 σ2

2

)
=(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
with

ρ = Cov(Y1,Y2)√
V[Y1]V[Y2]

=
σ2
12

σ2σ2
as a

correlation coefficient
•What is the difference between full, diagonal, and spherical covariance matrices?
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https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/gauss_plot_2d.ipynb
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MARGINALS AND CONDITIONALS OF AN MVN

Suppose y = (y1; y2) is jointly Gaussian with

parameters µ = (µ1, µ2)
T , and Σ =

(
Σ2
11 Σ2

12

Σ2
21 Σ2

22

)
.

The marginals are given by:
p(y1) = N (y1|µ1,Σ11)

p(y2) = N (y2|µ2,Σ22)

The posterior conditional is given by:
p(y1|y2) = N (y1|µ1|2,Σ1|2) where

µ1|2 = µ1 +Σ12Σ
−1
22 (y2 − µ2)

Σ1|2 = Σ11 − Σ12Σ
−1
22 Σ21
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Conditioning on a 2d Gaussian

missing value imputation | multiple imputation

Given a set of 2d points centered around zero mean with a unit standard deviation for
σ1 and σ2 and a correlation coffiecient of 0.7, what would be the expected value of y1
given y2 = 1? What happens if ρ = 0? Could you tell whether the covariance matris is
full, diagonal, or spherical?

The following formuls might be helpful to solve the problem:

Mean: µ = (µ1, µ2)

Covariance matrix: Σ =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
Marginal distribution: p(y1) = N (y1|µ1, σ

2
1)

Conditional distribution: p(y1|y2) = N
(

y1|µ1 +
ρσ1σ2

σ2
2

(y2 − µ2), σ
2
1 −

(ρσ1σ2)2

σ2
2

)
The answer is . . .
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Example: Imputing missing values (Code)

missing value imputation | multiple imputation | Hinton diagram

Given 15 vectors sampled from a 4 dimensional
Gaussian, infer the missing values h given the
observed ones v.

compute the mean µ and covariance matrix Σ
given the observed data
compute the marginal distribution of each
missing value p(yn,h|yn,v, (µ,Σ))

compute the posterior mean
¯yn,i = E[yn,i |yn,v, (µ,Σ)]
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https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/03/gauss_imputation_known_params_demo.ipynb
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Questions
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