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Abstract. In the last few years, deep neural        
networks (DNNs) have shown impressive     
success in different real-life problems such      
as computer version, speech recognition,     
and medical imaging. DNNs demand a huge       
amount of high quality labeled data, which is        
very expensive and difficult to find. To       
overcome the above limitations, the     
semi-supervised learning (SSL) paradigm    
has been widely used in the literature [1].        
SSL methods utilize few labeled data in a        
combination with a large amount of the       
unlabeled data in the training process. SSL       
methods can be divided into different      
categories, however, the current state-of-art     
(SOTA) methods [2-4] are considered as holistic approaches that combine consistency           
regularization [5], pseudo labeling [6], and data augmentation and regularization          
methods [7]. The goal of regularization methods [7-13] is to prevent the network from              
memorizing the training data and to enhance the robustness by augmenting the model             
with new virtual examples. The new data is generated through a linear or convex              
operation between two original data points from the training dataset such that the new              
examples are close to the original data but still useful to the network, Fig.1. Although               
this simple operation is useful and shows superior performance, yet studying the mixed             
data and how close they are to the original data and how their representations are close                
to the representations of original data needs further investigation. On the other hand, all              
of the aforementioned regularization methods were applied in computer vision tasks,           
yet, few of them were applied to the medical data in fully-supervised [14-17] or in               
semi-supervised [18] settings . Thus, understanding these methods is of high           
importance when it comes to the medical applications. To realize this, we will split the               
project into two phases: Phase I: Investigate both Input Mixup and Manifold Mixup on              
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toy examples to study the influence of (i) Different data complexity (linearly separable             
gaussian, swiss roll, half moons, etc.), (ii) Activation functions (tanh, relu, lrelu, siren             
[19]), (iii) Normalization methods (Batch, Instance, Group,...etc.), and (iv) Data Shift           
(Covariate Shift, Biased). Phase II: Investigate other Mixup Operations on Medical Data            
with unified architecture [18].  
 
Roadmap: 

● Familiarize yourself with the current literature on semi-supervised learning 
paradigme [1, 5-6], modern regularization methods [7-13], and current SOTA 
SSL methods (4 weeks) 

Phase I:  
● Implement different regularization methods on toy examples. (2 weeks) 
● Implement and analyse regularization methods using different data complexity. (2 

weeks)  
● Implement and analyse regularization methods using different activation 

functions. (2 weeks) 
● Implement and analyse regularization methods using different normalization 

methods. (2 weeks) 
● Implement and analyse regularization methods under data shift. (2 weeks) 

Phase II:  
● Implement a few more regularization methods and rerun the previous 

experiments on medical data (4 weeks)  
● Writing and summarizing the findings in the project report. (4 weeks) 
● Final Presentation (2 weeks) 

 
Research Questions:  
Q1) How diverse is the generated (mixed) data to the original data given the data 
complexity, hyper-parameters (activation, and normalization), and data shit?  
Q2) Are the generated (mixed) data useful for SSL training? 
Q3) Which one of the previous methods work best for medical data? 
Requirements: 

- Solid background in Machine/Deep Learning  
- Familiar with Unet, ResNet, CNN, ...etc. 
- Sufficient knowledge of Python programming language and libraries (Scikit-learn, 

NumPy, Tensorboard, tSNE...) 
- Experience with a mainstream deep learning framework such as PyTorch or 

Tensorflow. 
- Machine/Deep learning hands-on experience  
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