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Unsupervised anomaly detection
holds great promise for automatically
detecting medical conditions (e.g.
brain lesions) in image data since it
alleviates the need for costly
annotations [5]. Typically, one trains
a generative model, e.g. a Variational
Autoencoder (VAE), on data (e.g.
brain scans) of healthy patients and
detects pathological conditions at
test time as out-of-distribution (OOD)
data. This detection is commonly
performed using the reconstruction
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[1] or restoration loss [2]. A comparative study of all these methods can be found in [6].
However, it was previously established that these unsupervised anomaly detection approaches
are fundamentally unable to differentiate between real OOD data (e.g., healthy with domain
shift) and medical anomalies [3]. Therefore, in this work we are trying to develop an approach
that bypasses this shortcoming. We will start with a model trained on unsupervised anomaly
detection following the common procedure [1-3, 6, 9]. Subsequently, the goal is to gain
additional information about the target domain where the model is destined to be deployed.
Therefore, we envision two potential strategies: 1) Apply few-shot domain adaptation strategies
to our model (e.g. [4], [8]) such that healthy/non-anomalous samples are not wrongly detected
or/and 2) use techniques from online learning to understand which reconstruction error patterns
belong to “real” anomalies at inference time.

Roadmap:

e Familiarize with relevant literature (i.e. unsupervised anomaly detection, domain

adaptation, online learning).

Familiarize with existing codebase used in [3]

Apply domain adaptation strategies and quantify impact in terms of anomaly detection

performance and robustness

e Apply online and quantify impact in terms of anomaly detection performance and

robustness


https://bmic.ee.ethz.ch/people/person-details.xiaoran-chen.html
https://icu.ee.ethz.ch/people/person-detail.janis-postels.html
https://albarqouni.github.io/
http://people.ee.ethz.ch/~kender/

Prerequisites:
e Fundamental knowledge of deep learning and computer vision
e Proficiency in at least one deep learning framework (preferably PyTorch)
e Experience or knowledge about generative models is an advantage

Databases:
- Healthy Brain MR Imaging (CamCAN, OASIS, ADNI)
- MS/GB Lesion (BRATS, MS-LUB, MS-ISBI, ...)

- MOOD ( hitp://medicalood.dkfz.de/web/)

If you are interested in this project, please write an email to:

shadi.albargouni@helmholtz-muenchen.de , jpostels@ethz.ch , chenx@vision.ee.ethz.ch
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