One of the major challenges currently facing researchers in applying deep learning (DL) models to medical image analysis is the limited amount of annotated data. Collecting such ground-truth annotations requires domain knowledge, cost, and time, making it infeasible for large-scale databases. Albarqouni et al. [S5] presented a novel concept for learning DL models from noisy annotations collected through crowdsourcing platforms (e.g., Amazon Mechanical Turk and Crowdflower) by introducing a robust aggregation layer to the convolutional neural networks (Figure S2). Their proposed method was validated on a publicly available database on breast cancer histology images, showing astonishing results of their robust aggregation method compared to the baseline of majority voting. In follow-up work, Albarqouni et al. [S6] introduced the novel concept of a translation from an image to a video game object for biomedical images. This technique allows medical images to be represented as star-shaped objects that can be easily embedded into a readily available game canvas. The proposed method reduces the necessity of domain knowledge for annotations. Exciting and promising results were reported compared to the conventional crowdsourcing platforms.