Machine Learning has gained a lot of momentum within development organizations that are actively looking for innovative solutions to leverage their data to identify new levels of understanding their operations and processes. Machine learning is a subfield of Artificial Intelligence where the machine learns from data rather than from explicit programming.
Collecting large-scale medical datasets with fully annotated samples for training of deep networks is prohibitively expensive, especially for 3D volume data. Recent breakthroughs in self-supervised learning (SSL) offer the ability to overcome the …
I had the pleasure to give an invited talk at the #Collaborative Learning workshop at MBZUAI (Mohamed bin Zayed University of Artificial Intelligence)! It was a wonderful weekend full of amazing talks and fruitful discussions! I had the pleasure to meet a few familiar faces in our community along with other great speakers from UC Berkeley, Harvard, MIT, KAUST, ETH Zurich, Nvidia, and EPFL, among others. I would like to thank Michael I. Jordan and the organizing team behind the workshop for the invitation and the excellent hospitality! For those who are interested in the talks, they will be made publicly available soon!
With the advent of deep learning and increasing use of brain MRIs, a great amount of interest has arisen in automated anomaly segmentation to improve clinical workflows; however, it is time-consuming and expensive to curate medical imaging. Moreover, …
We had a wonderful week (10. DFG-#Nachwuchsakademie) with many insightful talks and fruitful discussions at the Schloss Birlinghoven! 20 participants with medical and technical backgrounds, from all over Germany, came together to learn about #AI in #Medicine!
Generative adversarial networks (GANs) offer an effective solution to the image-to-image translation problem, thereby allowing for new possibilities in medical imaging. They can translate images from one imaging modality to another at a low cost. For …